This repository has been archived on 2023-06-18. You can view files and clone it, but cannot push or open issues or pull requests.
ima02/evaluate_classifiers.py
2023-05-31 18:19:44 +02:00

225 lines
7.3 KiB
Python
Executable File

#!/usr/bin/env python3
import os
import pandas as pd
import glob
import re
import itertools
import statsmodels.stats.power as pw
import numpy as np
from train_classifiers import perform_grid_search, load_dataset
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.base import BaseEstimator, ClassifierMixin
from scipy.stats import wilcoxon
DIR: str = os.path.dirname(os.path.realpath(__file__))
OUT_DIR: str = DIR + '/models'
RANDOM_STATES: list[int] = [
0xDEADB017,
0xDEADBEEF,
4, # chosen by a fair dice roll
0xDECAFBAD,
0x000FF1CE,
8451,
42,
2056,
25,
6 // 2,
91,
7, # Where is Cherapunji?
115,
65,
76,
85,
83,
111,
110,
101,
]
class BiasedClassifier(BaseEstimator, ClassifierMixin):
def __init__(self, to_return=None):
self.to_return = to_return
def fit(self, X, y=None):
pass
def predict(self, X, y=None):
return np.array([self.to_return] * len(X))
def predict_proba(self, X, y=None):
return np.array([self.to_return] * len(X))
def clean_output():
filelist = glob.glob(OUT_DIR + '/models.csv')
for f in filelist:
os.remove(f)
string_to_classifier = {
'MLPClassifier': MLPClassifier(),
'GaussianNB': GaussianNB(),
'SVC': SVC(),
'DecisionTreeClassifier': DecisionTreeClassifier(),
'RandomForestClassifier': RandomForestClassifier()
}
def unit_grid(params: dict) -> dict:
return dict([(k, [v]) for k, v in params.items()])
def main():
if not os.path.exists(OUT_DIR + '/evaluation.csv'):
X, y = load_dataset()
df_best = pd.read_csv(OUT_DIR + '/best.csv')
df_best = df_best.loc[:, ['classifier', 'params']]
df_best.loc[:, 'classifier'] = df_best['classifier'].apply(lambda x: string_to_classifier[x])
df_best.loc[:, 'params'] = df_best['params'].apply(lambda x: eval(x))
classifiers = [(e['classifier'], unit_grid(e['params'])) for e in df_best.to_dict('records')]
classifiers.append((BiasedClassifier(), { 'to_return': [1] }), )
dfs: list[pd.DataFrame] = []
for i, state in enumerate(RANDOM_STATES):
print("Iteration " + str(i + 1) + " of " + str(len(RANDOM_STATES)) + "...")
dfs.append(perform_grid_search(X, y, classifiers, 5, state))
# concatenate all runs in single dataframe
df = pd.concat(dfs, ignore_index=True)
df.to_csv(OUT_DIR + '/evaluation.csv', index=False)
else:
df = pd.read_csv(OUT_DIR + '/evaluation.csv')
metrics_columns = list(df.filter(regex='^split\d_test'))
df = pd.melt(df, id_vars=['classifier'], value_vars=metrics_columns, var_name="metric")
df.loc[:, 'metric'] = df['metric'].apply(lambda x: re.sub('split\d_test_', '', x))
classifier_list = df['classifier'].unique()
metric_list = df['metric'].unique()
df_stats = pd.DataFrame(columns=['classifier_a', 'classifier_b', 'metric', 'pvalue'])
short_names = {
'MLPClassifier': "MLP",
'GaussianNB': "NB",
'SVC': "SVP",
'DecisionTreeClassifier': "DT",
'RandomForestClassifier': "RF",
'BiasedClassifier': 'Biased'
}
observations = {}
i = 1
for classifier_a in classifier_list:
for classifier_b in classifier_list:
if classifier_a >= classifier_b:
continue
for metric in metric_list:
if metric == 'accuracy':
continue
series_a = list(df.loc[(df['classifier'] == classifier_a) & \
(df['metric'] == metric), 'value'])
series_b = list(df.loc[(df['classifier'] == classifier_b) & \
(df['metric'] == metric), 'value'])
df_stats.loc[i, 'classifier_a'] = classifier_a
df_stats.loc[i, 'classifier_b'] = classifier_b
df_stats.loc[i, 'metric'] = metric
pvalue = wilcoxon(series_a, series_b).pvalue
df_stats.loc[i, 'pvalue'] = pvalue
i += 1
if metric not in observations:
observations[metric] = []
sa = short_names[classifier_a]
sb = short_names[classifier_b]
meana = np.round(np.mean(series_a), decimals=4)
meanb = np.round(np.mean(series_b), decimals=4)
pvalue = np.round(pvalue, decimals=4)
s = f"- Mean *{metric}* for *{sa}*: {meana},"
s += f" mean *{metric}* for *{sb}*: {meanb} $\\Rightarrow$ "
if pvalue < 0.05:
better = sa if meana > meanb else sb
worse = sa if better == sb else sb
s += f"*{better}* is better than *{worse}* (*p-value* $= {pvalue}$)"
else:
eff_size = (np.mean(series_a) - np.mean(series_b)) / np.sqrt((np.std(series_a) ** 2 + np.std(series_b) ** 2) / 2.0)
power = pw.FTestAnovaPower().solve_power(effect_size=eff_size, nobs=len(series_a) + len(series_b), alpha=0.05)
power = np.round(power, decimals=4)
if power >= 0.8:
s += f"*{sa}* is as effective as *{sb}* (*p-value* $= {pvalue}$, *5% corrected ANOVA power* $= {power}$)"
else:
s += f"statistical test inconclusive (*p-value* $= {pvalue}$, *5% corrected ANOVA power* $= {power}$)"
observations[metric].append(s)
for metric in metric_list:
if metric == 'accuracy':
continue
print(metric + ":")
print("\n".join(observations[metric]))
df_stats.to_csv(OUT_DIR + '/model_stats.csv')
for metric in metric_list:
if metric == 'accuracy':
continue
print(metric)
dft = df_stats.loc[df_stats['metric'] == metric, :].copy()
dft.pvalue = dft.pvalue.apply(lambda x: '{0:.4g}'.format(round(x, 4)))
dft = dft \
.pivot(index=['classifier_a'], columns=['classifier_b'], values=['pvalue']) \
.reset_index(drop=False)
dft.columns = sorted([x[1] for x in dft.columns])
print(dft.replace({ np.nan: '--' }).to_markdown(index=False) + '\n')
dfg = df.loc[df['metric'] != 'accuracy', :].sort_values(by=['classifier'])
# Order by metric list
dfg = pd.concat([dfg[dfg['metric'] == met] for met in metric_list if met != 'accuracy'])
f, ax = plt.subplots(figsize=(8, 10))
plt.yticks(np.arange(0.0, 1.0 + 1, 0.1))
sns.boxplot(x="metric", y="value", hue="classifier", data=dfg, ax=ax)
ax.set(ylabel="Metric value", ylim=[0, 1], xlabel="Metric")
ax.set_title("Distribution of metrics for each classifier")
sns.despine(offset=10, trim=True)
f.savefig(OUT_DIR + '/boxplot.svg')
# Print table of mean and standard deviation
dftab = dfg.groupby(['classifier', 'metric']) \
.agg({'value': ['mean', 'std']}) \
.reset_index(drop=False)
dftab.columns = [x[1] if x[0] == 'value' else x[0] for x in dftab.columns]
print(dftab.to_markdown(index=False))
print()
if __name__ == '__main__':
main()