part 3 done
This commit is contained in:
parent
72bfb2b778
commit
ea74353ba3
3 changed files with 274 additions and 30 deletions
160
.gitignore
vendored
160
.gitignore
vendored
|
@ -1 +1,161 @@
|
|||
env/
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
.idea/
|
76
prec-recall.py
Normal file
76
prec-recall.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
import argparse
|
||||
from typing import Iterable, Optional
|
||||
|
||||
import pandas as pd
|
||||
|
||||
search_data = __import__('search-data')
|
||||
|
||||
PREFIX: str = "./"
|
||||
|
||||
|
||||
def read_ground_truth(file_path: str, df: pd.DataFrame) -> Iterable[tuple[str, int]]:
|
||||
records: list[list[str]] = []
|
||||
|
||||
with open(file_path) as f:
|
||||
record_tmp = []
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if line == '':
|
||||
assert len(record_tmp) == 3
|
||||
records.append(record_tmp)
|
||||
record_tmp = []
|
||||
else:
|
||||
record_tmp.append(line)
|
||||
|
||||
if len(record_tmp) == 3:
|
||||
records.append(record_tmp)
|
||||
|
||||
for query, name, file_name in records:
|
||||
assert file_name.startswith(PREFIX)
|
||||
file_name = file_name[len(PREFIX):]
|
||||
|
||||
row = df[(df.name == name) & (df.file == file_name)]
|
||||
assert len(row) == 1
|
||||
|
||||
yield query, row.index[0]
|
||||
|
||||
|
||||
def better_index(li: list[tuple[int, float]], e: int) -> Optional[int]:
|
||||
for i, le in enumerate(li):
|
||||
if le[0] == e:
|
||||
return i
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def main(method: str, file_path: str):
|
||||
df = search_data.load_data()
|
||||
test_set = list(read_ground_truth(file_path, df))
|
||||
|
||||
precision_sum = 0
|
||||
recall_sum = 0
|
||||
|
||||
for query, expected in test_set:
|
||||
indexes_values: list[tuple[int, float]] = search_data.search(query, method, df)
|
||||
idx = better_index(indexes_values, expected)
|
||||
|
||||
if idx is None:
|
||||
precision = 0
|
||||
recall = 0
|
||||
else:
|
||||
precision = 1 / (idx + 1)
|
||||
recall = 1
|
||||
|
||||
precision_sum += precision
|
||||
recall_sum += recall
|
||||
|
||||
print("Precision: {0:.2f}%".format(precision_sum * 100 / len(test_set)))
|
||||
print("Recall: {0:.2f}%".format(recall_sum * 100 / len(test_set)))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("method", help="the method to compare similarities with", type=str)
|
||||
parser.add_argument("ground_truth_file", help="file where ground truth comes from", type=str)
|
||||
args = parser.parse_args()
|
||||
main(args.method, args.ground_truth_file)
|
|
@ -1,20 +1,17 @@
|
|||
import re
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import pandas as pd
|
||||
import re
|
||||
|
||||
import coloredlogs
|
||||
import nltk
|
||||
import numpy as np
|
||||
from nltk.corpus import stopwords
|
||||
from gensim.similarities import SparseMatrixSimilarity, MatrixSimilarity
|
||||
from gensim.models import TfidfModel, LsiModel, LdaModel
|
||||
from gensim.models.doc2vec import TaggedDocument, Doc2Vec
|
||||
import pandas as pd
|
||||
from gensim.corpora import Dictionary
|
||||
from collections import defaultdict
|
||||
import coloredlogs
|
||||
import logging
|
||||
|
||||
coloredlogs.install()
|
||||
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
|
||||
from gensim.models import TfidfModel, LsiModel
|
||||
from gensim.models.doc2vec import TaggedDocument, Doc2Vec
|
||||
from gensim.similarities import SparseMatrixSimilarity
|
||||
from nltk.corpus import stopwords
|
||||
|
||||
nltk.download('stopwords')
|
||||
|
||||
|
@ -55,19 +52,19 @@ def get_bow(data, split_f):
|
|||
return remove_stopwords(split_f(data))
|
||||
|
||||
|
||||
def print_sims(corpus, query, df, dictionary):
|
||||
def pick_most_similar(corpus, query, dictionary):
|
||||
index = SparseMatrixSimilarity(corpus, num_features=len(dictionary))
|
||||
sims = index[query]
|
||||
pick_top = 5
|
||||
print_results(sorted(enumerate(sims), key=lambda x: x[1], reverse=True)[:pick_top], df)
|
||||
pick_top = 5
|
||||
return sorted(enumerate(sims), key=lambda x: x[1], reverse=True)[:pick_top]
|
||||
|
||||
|
||||
def print_results(idxs_scores, df):
|
||||
def print_results(indexes_scores: list[tuple[int, float]], df):
|
||||
print("\n===== RESULTS: =====")
|
||||
|
||||
for idx, score in idxs_scores:
|
||||
for idx, score in indexes_scores:
|
||||
row = df.loc[idx]
|
||||
|
||||
|
||||
comment = row["comment"]
|
||||
if type(comment) != str:
|
||||
desc = ""
|
||||
|
@ -76,7 +73,7 @@ def print_results(idxs_scores, df):
|
|||
desc = "Description: {c}\n".format(c=comment)
|
||||
desc = (desc[:75] + '...\n') if len(desc) > 75 else desc
|
||||
|
||||
print("\nSimilarity: {s:2.02f}%".format(s=score*100))
|
||||
print("\nSimilarity: {s:2.02f}%".format(s=score * 100))
|
||||
print("Python {feat}: {name}\n{desc}File: {file}\nLine: {line}" \
|
||||
.format(feat=row["type"], name=row["name"], desc=desc, file=row["file"], line=row["line"]))
|
||||
|
||||
|
@ -90,41 +87,47 @@ def build_doc2vec_model(corpus_list):
|
|||
return model
|
||||
|
||||
|
||||
def search(query, method):
|
||||
df = pd.read_csv(IN_DATASET)
|
||||
def load_data() -> pd.DataFrame:
|
||||
df = pd.read_csv(IN_DATASET, index_col=0)
|
||||
df["name_bow"] = df["name"].apply(lambda n: get_bow(n, identifier_split))
|
||||
df["comment_bow"] = df["comment"].apply(lambda c: get_bow(c, comment_split))
|
||||
return df
|
||||
|
||||
|
||||
def search(query: str, method: str, df: pd.DataFrame) -> list[tuple[int, float]]:
|
||||
corpus_list = []
|
||||
for idx, row in df.iterrows():
|
||||
document_words = row["name_bow"] + row["comment_bow"]
|
||||
corpus_list.append(document_words)
|
||||
|
||||
query_w = get_bow(query, comment_split)
|
||||
|
||||
dictionary = None
|
||||
corpus_bow = None
|
||||
query_bow = None
|
||||
|
||||
if method != "doc2vec":
|
||||
dictionary = Dictionary(corpus_list)
|
||||
corpus_bow = [dictionary.doc2bow(text) for text in corpus_list]
|
||||
query_bow = dictionary.doc2bow(query_w)
|
||||
|
||||
|
||||
if method == "tfidf":
|
||||
tfidf = TfidfModel(corpus_bow)
|
||||
print_sims(tfidf[corpus_bow], tfidf[query_bow], df, dictionary)
|
||||
return pick_most_similar(tfidf[corpus_bow], tfidf[query_bow], dictionary)
|
||||
elif method == "freq":
|
||||
print_sims(corpus_bow, query_bow, df, dictionary)
|
||||
return pick_most_similar(corpus_bow, query_bow, dictionary)
|
||||
elif method == "lsi":
|
||||
lsi = LsiModel(corpus_bow)
|
||||
print_sims(lsi[corpus_bow], lsi[query_bow], df, dictionary)
|
||||
return pick_most_similar(lsi[corpus_bow], lsi[query_bow], dictionary)
|
||||
elif method == "doc2vec":
|
||||
if os.path.exists(DOC2VEC_MODEL):
|
||||
model = Doc2Vec.load(DOC2VEC_MODEL)
|
||||
else:
|
||||
model = build_doc2vec_model(corpus_list)
|
||||
|
||||
dvquery = model.infer_vector(query_w)
|
||||
print_results(model.dv.most_similar([dvquery], topn=5), df)
|
||||
dv_query = model.infer_vector(query_w)
|
||||
return model.dv.most_similar([dv_query], topn=5)
|
||||
else:
|
||||
raise Error("method unknown")
|
||||
raise ValueError("method unknown")
|
||||
|
||||
|
||||
def main():
|
||||
|
@ -132,8 +135,13 @@ def main():
|
|||
parser.add_argument("method", help="the method to compare similarities with", type=str)
|
||||
parser.add_argument("query", help="the query to search the corpus with", type=str)
|
||||
args = parser.parse_args()
|
||||
search(args.query, args.method)
|
||||
|
||||
df = load_data()
|
||||
indexes_scores = search(args.query, args.method, df)
|
||||
print_results(indexes_scores, df)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
coloredlogs.install()
|
||||
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
|
||||
main()
|
||||
|
|
Loading…
Reference in a new issue