part 3 done
This commit is contained in:
parent
72bfb2b778
commit
ea74353ba3
3 changed files with 274 additions and 30 deletions
160
.gitignore
vendored
160
.gitignore
vendored
|
@ -1 +1,161 @@
|
||||||
env/
|
env/
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
cover/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
.pybuilder/
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
# .python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# poetry
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||||
|
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||||
|
# commonly ignored for libraries.
|
||||||
|
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||||
|
#poetry.lock
|
||||||
|
|
||||||
|
# pdm
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||||
|
#pdm.lock
|
||||||
|
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||||
|
# in version control.
|
||||||
|
# https://pdm.fming.dev/#use-with-ide
|
||||||
|
.pdm.toml
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
# pytype static type analyzer
|
||||||
|
.pytype/
|
||||||
|
|
||||||
|
# Cython debug symbols
|
||||||
|
cython_debug/
|
||||||
|
|
||||||
|
# PyCharm
|
||||||
|
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||||
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
|
.idea/
|
76
prec-recall.py
Normal file
76
prec-recall.py
Normal file
|
@ -0,0 +1,76 @@
|
||||||
|
import argparse
|
||||||
|
from typing import Iterable, Optional
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
search_data = __import__('search-data')
|
||||||
|
|
||||||
|
PREFIX: str = "./"
|
||||||
|
|
||||||
|
|
||||||
|
def read_ground_truth(file_path: str, df: pd.DataFrame) -> Iterable[tuple[str, int]]:
|
||||||
|
records: list[list[str]] = []
|
||||||
|
|
||||||
|
with open(file_path) as f:
|
||||||
|
record_tmp = []
|
||||||
|
for line in f:
|
||||||
|
line = line.strip()
|
||||||
|
if line == '':
|
||||||
|
assert len(record_tmp) == 3
|
||||||
|
records.append(record_tmp)
|
||||||
|
record_tmp = []
|
||||||
|
else:
|
||||||
|
record_tmp.append(line)
|
||||||
|
|
||||||
|
if len(record_tmp) == 3:
|
||||||
|
records.append(record_tmp)
|
||||||
|
|
||||||
|
for query, name, file_name in records:
|
||||||
|
assert file_name.startswith(PREFIX)
|
||||||
|
file_name = file_name[len(PREFIX):]
|
||||||
|
|
||||||
|
row = df[(df.name == name) & (df.file == file_name)]
|
||||||
|
assert len(row) == 1
|
||||||
|
|
||||||
|
yield query, row.index[0]
|
||||||
|
|
||||||
|
|
||||||
|
def better_index(li: list[tuple[int, float]], e: int) -> Optional[int]:
|
||||||
|
for i, le in enumerate(li):
|
||||||
|
if le[0] == e:
|
||||||
|
return i
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def main(method: str, file_path: str):
|
||||||
|
df = search_data.load_data()
|
||||||
|
test_set = list(read_ground_truth(file_path, df))
|
||||||
|
|
||||||
|
precision_sum = 0
|
||||||
|
recall_sum = 0
|
||||||
|
|
||||||
|
for query, expected in test_set:
|
||||||
|
indexes_values: list[tuple[int, float]] = search_data.search(query, method, df)
|
||||||
|
idx = better_index(indexes_values, expected)
|
||||||
|
|
||||||
|
if idx is None:
|
||||||
|
precision = 0
|
||||||
|
recall = 0
|
||||||
|
else:
|
||||||
|
precision = 1 / (idx + 1)
|
||||||
|
recall = 1
|
||||||
|
|
||||||
|
precision_sum += precision
|
||||||
|
recall_sum += recall
|
||||||
|
|
||||||
|
print("Precision: {0:.2f}%".format(precision_sum * 100 / len(test_set)))
|
||||||
|
print("Recall: {0:.2f}%".format(recall_sum * 100 / len(test_set)))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("method", help="the method to compare similarities with", type=str)
|
||||||
|
parser.add_argument("ground_truth_file", help="file where ground truth comes from", type=str)
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args.method, args.ground_truth_file)
|
|
@ -1,20 +1,17 @@
|
||||||
import re
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
import pandas as pd
|
import re
|
||||||
|
|
||||||
|
import coloredlogs
|
||||||
import nltk
|
import nltk
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from nltk.corpus import stopwords
|
import pandas as pd
|
||||||
from gensim.similarities import SparseMatrixSimilarity, MatrixSimilarity
|
|
||||||
from gensim.models import TfidfModel, LsiModel, LdaModel
|
|
||||||
from gensim.models.doc2vec import TaggedDocument, Doc2Vec
|
|
||||||
from gensim.corpora import Dictionary
|
from gensim.corpora import Dictionary
|
||||||
from collections import defaultdict
|
from gensim.models import TfidfModel, LsiModel
|
||||||
import coloredlogs
|
from gensim.models.doc2vec import TaggedDocument, Doc2Vec
|
||||||
import logging
|
from gensim.similarities import SparseMatrixSimilarity
|
||||||
|
from nltk.corpus import stopwords
|
||||||
coloredlogs.install()
|
|
||||||
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
|
|
||||||
|
|
||||||
nltk.download('stopwords')
|
nltk.download('stopwords')
|
||||||
|
|
||||||
|
@ -55,17 +52,17 @@ def get_bow(data, split_f):
|
||||||
return remove_stopwords(split_f(data))
|
return remove_stopwords(split_f(data))
|
||||||
|
|
||||||
|
|
||||||
def print_sims(corpus, query, df, dictionary):
|
def pick_most_similar(corpus, query, dictionary):
|
||||||
index = SparseMatrixSimilarity(corpus, num_features=len(dictionary))
|
index = SparseMatrixSimilarity(corpus, num_features=len(dictionary))
|
||||||
sims = index[query]
|
sims = index[query]
|
||||||
pick_top = 5
|
pick_top = 5
|
||||||
print_results(sorted(enumerate(sims), key=lambda x: x[1], reverse=True)[:pick_top], df)
|
return sorted(enumerate(sims), key=lambda x: x[1], reverse=True)[:pick_top]
|
||||||
|
|
||||||
|
|
||||||
def print_results(idxs_scores, df):
|
def print_results(indexes_scores: list[tuple[int, float]], df):
|
||||||
print("\n===== RESULTS: =====")
|
print("\n===== RESULTS: =====")
|
||||||
|
|
||||||
for idx, score in idxs_scores:
|
for idx, score in indexes_scores:
|
||||||
row = df.loc[idx]
|
row = df.loc[idx]
|
||||||
|
|
||||||
comment = row["comment"]
|
comment = row["comment"]
|
||||||
|
@ -90,17 +87,23 @@ def build_doc2vec_model(corpus_list):
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def search(query, method):
|
def load_data() -> pd.DataFrame:
|
||||||
df = pd.read_csv(IN_DATASET)
|
df = pd.read_csv(IN_DATASET, index_col=0)
|
||||||
df["name_bow"] = df["name"].apply(lambda n: get_bow(n, identifier_split))
|
df["name_bow"] = df["name"].apply(lambda n: get_bow(n, identifier_split))
|
||||||
df["comment_bow"] = df["comment"].apply(lambda c: get_bow(c, comment_split))
|
df["comment_bow"] = df["comment"].apply(lambda c: get_bow(c, comment_split))
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
def search(query: str, method: str, df: pd.DataFrame) -> list[tuple[int, float]]:
|
||||||
corpus_list = []
|
corpus_list = []
|
||||||
for idx, row in df.iterrows():
|
for idx, row in df.iterrows():
|
||||||
document_words = row["name_bow"] + row["comment_bow"]
|
document_words = row["name_bow"] + row["comment_bow"]
|
||||||
corpus_list.append(document_words)
|
corpus_list.append(document_words)
|
||||||
|
|
||||||
query_w = get_bow(query, comment_split)
|
query_w = get_bow(query, comment_split)
|
||||||
|
dictionary = None
|
||||||
|
corpus_bow = None
|
||||||
|
query_bow = None
|
||||||
|
|
||||||
if method != "doc2vec":
|
if method != "doc2vec":
|
||||||
dictionary = Dictionary(corpus_list)
|
dictionary = Dictionary(corpus_list)
|
||||||
|
@ -109,22 +112,22 @@ def search(query, method):
|
||||||
|
|
||||||
if method == "tfidf":
|
if method == "tfidf":
|
||||||
tfidf = TfidfModel(corpus_bow)
|
tfidf = TfidfModel(corpus_bow)
|
||||||
print_sims(tfidf[corpus_bow], tfidf[query_bow], df, dictionary)
|
return pick_most_similar(tfidf[corpus_bow], tfidf[query_bow], dictionary)
|
||||||
elif method == "freq":
|
elif method == "freq":
|
||||||
print_sims(corpus_bow, query_bow, df, dictionary)
|
return pick_most_similar(corpus_bow, query_bow, dictionary)
|
||||||
elif method == "lsi":
|
elif method == "lsi":
|
||||||
lsi = LsiModel(corpus_bow)
|
lsi = LsiModel(corpus_bow)
|
||||||
print_sims(lsi[corpus_bow], lsi[query_bow], df, dictionary)
|
return pick_most_similar(lsi[corpus_bow], lsi[query_bow], dictionary)
|
||||||
elif method == "doc2vec":
|
elif method == "doc2vec":
|
||||||
if os.path.exists(DOC2VEC_MODEL):
|
if os.path.exists(DOC2VEC_MODEL):
|
||||||
model = Doc2Vec.load(DOC2VEC_MODEL)
|
model = Doc2Vec.load(DOC2VEC_MODEL)
|
||||||
else:
|
else:
|
||||||
model = build_doc2vec_model(corpus_list)
|
model = build_doc2vec_model(corpus_list)
|
||||||
|
|
||||||
dvquery = model.infer_vector(query_w)
|
dv_query = model.infer_vector(query_w)
|
||||||
print_results(model.dv.most_similar([dvquery], topn=5), df)
|
return model.dv.most_similar([dv_query], topn=5)
|
||||||
else:
|
else:
|
||||||
raise Error("method unknown")
|
raise ValueError("method unknown")
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
@ -132,8 +135,13 @@ def main():
|
||||||
parser.add_argument("method", help="the method to compare similarities with", type=str)
|
parser.add_argument("method", help="the method to compare similarities with", type=str)
|
||||||
parser.add_argument("query", help="the query to search the corpus with", type=str)
|
parser.add_argument("query", help="the query to search the corpus with", type=str)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
search(args.query, args.method)
|
|
||||||
|
df = load_data()
|
||||||
|
indexes_scores = search(args.query, args.method, df)
|
||||||
|
print_results(indexes_scores, df)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
coloredlogs.install()
|
||||||
|
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
|
Loading…
Reference in a new issue