part 3 done

This commit is contained in:
Claudio Maggioni 2023-10-23 15:42:25 +02:00
parent 72bfb2b778
commit ea74353ba3
3 changed files with 274 additions and 30 deletions

160
.gitignore vendored
View file

@ -1 +1,161 @@
env/ env/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/

76
prec-recall.py Normal file
View file

@ -0,0 +1,76 @@
import argparse
from typing import Iterable, Optional
import pandas as pd
search_data = __import__('search-data')
PREFIX: str = "./"
def read_ground_truth(file_path: str, df: pd.DataFrame) -> Iterable[tuple[str, int]]:
records: list[list[str]] = []
with open(file_path) as f:
record_tmp = []
for line in f:
line = line.strip()
if line == '':
assert len(record_tmp) == 3
records.append(record_tmp)
record_tmp = []
else:
record_tmp.append(line)
if len(record_tmp) == 3:
records.append(record_tmp)
for query, name, file_name in records:
assert file_name.startswith(PREFIX)
file_name = file_name[len(PREFIX):]
row = df[(df.name == name) & (df.file == file_name)]
assert len(row) == 1
yield query, row.index[0]
def better_index(li: list[tuple[int, float]], e: int) -> Optional[int]:
for i, le in enumerate(li):
if le[0] == e:
return i
return None
def main(method: str, file_path: str):
df = search_data.load_data()
test_set = list(read_ground_truth(file_path, df))
precision_sum = 0
recall_sum = 0
for query, expected in test_set:
indexes_values: list[tuple[int, float]] = search_data.search(query, method, df)
idx = better_index(indexes_values, expected)
if idx is None:
precision = 0
recall = 0
else:
precision = 1 / (idx + 1)
recall = 1
precision_sum += precision
recall_sum += recall
print("Precision: {0:.2f}%".format(precision_sum * 100 / len(test_set)))
print("Recall: {0:.2f}%".format(recall_sum * 100 / len(test_set)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("method", help="the method to compare similarities with", type=str)
parser.add_argument("ground_truth_file", help="file where ground truth comes from", type=str)
args = parser.parse_args()
main(args.method, args.ground_truth_file)

View file

@ -1,20 +1,17 @@
import re
import argparse import argparse
import logging
import os import os
import pandas as pd import re
import coloredlogs
import nltk import nltk
import numpy as np import numpy as np
from nltk.corpus import stopwords import pandas as pd
from gensim.similarities import SparseMatrixSimilarity, MatrixSimilarity
from gensim.models import TfidfModel, LsiModel, LdaModel
from gensim.models.doc2vec import TaggedDocument, Doc2Vec
from gensim.corpora import Dictionary from gensim.corpora import Dictionary
from collections import defaultdict from gensim.models import TfidfModel, LsiModel
import coloredlogs from gensim.models.doc2vec import TaggedDocument, Doc2Vec
import logging from gensim.similarities import SparseMatrixSimilarity
from nltk.corpus import stopwords
coloredlogs.install()
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
nltk.download('stopwords') nltk.download('stopwords')
@ -55,17 +52,17 @@ def get_bow(data, split_f):
return remove_stopwords(split_f(data)) return remove_stopwords(split_f(data))
def print_sims(corpus, query, df, dictionary): def pick_most_similar(corpus, query, dictionary):
index = SparseMatrixSimilarity(corpus, num_features=len(dictionary)) index = SparseMatrixSimilarity(corpus, num_features=len(dictionary))
sims = index[query] sims = index[query]
pick_top = 5 pick_top = 5
print_results(sorted(enumerate(sims), key=lambda x: x[1], reverse=True)[:pick_top], df) return sorted(enumerate(sims), key=lambda x: x[1], reverse=True)[:pick_top]
def print_results(idxs_scores, df): def print_results(indexes_scores: list[tuple[int, float]], df):
print("\n===== RESULTS: =====") print("\n===== RESULTS: =====")
for idx, score in idxs_scores: for idx, score in indexes_scores:
row = df.loc[idx] row = df.loc[idx]
comment = row["comment"] comment = row["comment"]
@ -76,7 +73,7 @@ def print_results(idxs_scores, df):
desc = "Description: {c}\n".format(c=comment) desc = "Description: {c}\n".format(c=comment)
desc = (desc[:75] + '...\n') if len(desc) > 75 else desc desc = (desc[:75] + '...\n') if len(desc) > 75 else desc
print("\nSimilarity: {s:2.02f}%".format(s=score*100)) print("\nSimilarity: {s:2.02f}%".format(s=score * 100))
print("Python {feat}: {name}\n{desc}File: {file}\nLine: {line}" \ print("Python {feat}: {name}\n{desc}File: {file}\nLine: {line}" \
.format(feat=row["type"], name=row["name"], desc=desc, file=row["file"], line=row["line"])) .format(feat=row["type"], name=row["name"], desc=desc, file=row["file"], line=row["line"]))
@ -90,17 +87,23 @@ def build_doc2vec_model(corpus_list):
return model return model
def search(query, method): def load_data() -> pd.DataFrame:
df = pd.read_csv(IN_DATASET) df = pd.read_csv(IN_DATASET, index_col=0)
df["name_bow"] = df["name"].apply(lambda n: get_bow(n, identifier_split)) df["name_bow"] = df["name"].apply(lambda n: get_bow(n, identifier_split))
df["comment_bow"] = df["comment"].apply(lambda c: get_bow(c, comment_split)) df["comment_bow"] = df["comment"].apply(lambda c: get_bow(c, comment_split))
return df
def search(query: str, method: str, df: pd.DataFrame) -> list[tuple[int, float]]:
corpus_list = [] corpus_list = []
for idx, row in df.iterrows(): for idx, row in df.iterrows():
document_words = row["name_bow"] + row["comment_bow"] document_words = row["name_bow"] + row["comment_bow"]
corpus_list.append(document_words) corpus_list.append(document_words)
query_w = get_bow(query, comment_split) query_w = get_bow(query, comment_split)
dictionary = None
corpus_bow = None
query_bow = None
if method != "doc2vec": if method != "doc2vec":
dictionary = Dictionary(corpus_list) dictionary = Dictionary(corpus_list)
@ -109,22 +112,22 @@ def search(query, method):
if method == "tfidf": if method == "tfidf":
tfidf = TfidfModel(corpus_bow) tfidf = TfidfModel(corpus_bow)
print_sims(tfidf[corpus_bow], tfidf[query_bow], df, dictionary) return pick_most_similar(tfidf[corpus_bow], tfidf[query_bow], dictionary)
elif method == "freq": elif method == "freq":
print_sims(corpus_bow, query_bow, df, dictionary) return pick_most_similar(corpus_bow, query_bow, dictionary)
elif method == "lsi": elif method == "lsi":
lsi = LsiModel(corpus_bow) lsi = LsiModel(corpus_bow)
print_sims(lsi[corpus_bow], lsi[query_bow], df, dictionary) return pick_most_similar(lsi[corpus_bow], lsi[query_bow], dictionary)
elif method == "doc2vec": elif method == "doc2vec":
if os.path.exists(DOC2VEC_MODEL): if os.path.exists(DOC2VEC_MODEL):
model = Doc2Vec.load(DOC2VEC_MODEL) model = Doc2Vec.load(DOC2VEC_MODEL)
else: else:
model = build_doc2vec_model(corpus_list) model = build_doc2vec_model(corpus_list)
dvquery = model.infer_vector(query_w) dv_query = model.infer_vector(query_w)
print_results(model.dv.most_similar([dvquery], topn=5), df) return model.dv.most_similar([dv_query], topn=5)
else: else:
raise Error("method unknown") raise ValueError("method unknown")
def main(): def main():
@ -132,8 +135,13 @@ def main():
parser.add_argument("method", help="the method to compare similarities with", type=str) parser.add_argument("method", help="the method to compare similarities with", type=str)
parser.add_argument("query", help="the query to search the corpus with", type=str) parser.add_argument("query", help="the query to search the corpus with", type=str)
args = parser.parse_args() args = parser.parse_args()
search(args.query, args.method)
df = load_data()
indexes_scores = search(args.query, args.method, df)
print_results(indexes_scores, df)
if __name__ == "__main__": if __name__ == "__main__":
coloredlogs.install()
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
main() main()