wip report

This commit is contained in:
Claudio Maggioni 2023-11-07 11:48:00 +01:00
parent 678434abdf
commit fd007afb60
13 changed files with 279 additions and 45 deletions

View file

@ -12,3 +12,60 @@ In this repository, you can find the following files:
For more information, see the Project-02 slides (available on iCourse) For more information, see the Project-02 slides (available on iCourse)
Note: Feel free to modify this file according to the project's necessities. Note: Feel free to modify this file according to the project's necessities.
## Environment setup
To install the required dependencies make sure `python3` points to a Python 3.10 or 3.11 installation and then run:
```shell
python3 -m venv env
source env/bin/activate
pip install -r requirements.txt
```
## Part 1: data extraction
To extract the data in file `data.csv` run the command:
```shell
python3 extract-data.py
```
The script prints the requested counts, which are namely:
```
Methods: 5817
Functions: 4565
Classes: 1882
Python Files: 2817
```
## Part 2: Training
In order to train and predict the output of a given query run the command:
```shell
python3 search-data.py [method] "[query]"
```
where `[method]` is one of `{tfidf,freq,lsi,doc2vec}` or `all` to run all classifiers and `[query]` is the natural
language query to search. Outputs are printed on stdout, and in case of `doc2vec` the trained model file is saved in
`./doc2vec_model.dat` and fetched in this path for subsequent executions.
## Part 3: Evaluation
To evaluate a model run the command:
```shell
python3 search-data.py [method] ./ground-truth-unique.txt
```
where `[method]` is one of `{tfidf,freq,lsi,doc2vec}` or `all` to evaluate all classifiers. The script outputs the
performance of the classifiers in terms of average precision and recall, which are namely:
| Engine | Average Precision | Average Recall |
|:---------|:--------------------|:-----------------|
| tfidf | 20.00% | 20.00% |
| freq | 27.00% | 40.00% |
| lsi | 4.00% | 20.00% |
| doc2vec | 10.00% | 10.00% |

Binary file not shown.

View file

@ -15,7 +15,7 @@ def find_py_files(dir):
def keep_name(name): def keep_name(name):
return not name.startswith("_") and not "main" in str(name).lower() and \ return not name.startswith("_") and "main" not in str(name).lower() and \
"test" not in str(name).lower() "test" not in str(name).lower()
@ -56,11 +56,11 @@ class FeatureVisitor(ast.NodeVisitor):
}) })
def main(): def main():
df = pd.DataFrame(columns=["name", "file", "line", "type", "comment"]) df = pd.DataFrame(columns=["name", "file", "line", "type", "comment"])
files = list(find_py_files(IN_DIR))
for file in find_py_files(IN_DIR): for file in files:
with open(file, "r") as f: with open(file, "r") as f:
py_source = f.read() py_source = f.read()
@ -71,6 +71,16 @@ def main():
df_visitor = pd.DataFrame.from_records(visitor.rows) df_visitor = pd.DataFrame.from_records(visitor.rows)
df = pd.concat([df, df_visitor]) df = pd.concat([df, df_visitor])
counts = df["type"].apply(lambda ft: {
"function": "Functions",
"class": "Classes",
"method": "Methods"
}[ft]).value_counts().to_dict()
counts["Python Files"] = len(files)
for file_type, name in counts.items():
print(f"{file_type}: {name}")
df.reset_index(drop=True).to_csv(OUT_FILE) df.reset_index(drop=True).to_csv(OUT_FILE)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 89 KiB

After

Width:  |  Height:  |  Size: 89 KiB

View file

@ -1,2 +1,2 @@
Precision: 30.00% Precision: 10.00%
Recall: 30.00% Recall: 10.00%

View file

@ -1,2 +1,2 @@
Precision: 24.50% Precision: 27.00%
Recall: 24.50% Recall: 40.00%

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

After

Width:  |  Height:  |  Size: 79 KiB

View file

@ -1,2 +1,2 @@
Precision: 3.33% Precision: 4.00%
Recall: 3.33% Recall: 20.00%

View file

@ -1,2 +1,2 @@
Precision: 22.50% Precision: 20.00%
Recall: 22.50% Recall: 20.00%

View file

@ -53,7 +53,7 @@ def better_index(li: list[tuple[int, float]], e: int) -> Optional[int]:
def plot_df(results, query: str) -> Optional[pd.DataFrame]: def plot_df(results, query: str) -> Optional[pd.DataFrame]:
if results.vectors is not None and results.query_vector is not None: if results.vectors is not None and results.query_vector is not None:
tsne_vectors = np.array(results.vectors + [results.query_vector]) tsne_vectors = np.array(results.vectors + [results.query_vector])
tsne = TSNE(n_components=2, verbose=1, perplexity=1.5, n_iter=3000) tsne = TSNE(n_components=2, perplexity=2, n_iter=3000)
tsne_results = tsne.fit_transform(tsne_vectors) tsne_results = tsne.fit_transform(tsne_vectors)
df = pd.DataFrame(columns=['tsne-2d-one', 'tsne-2d-two', 'Query', 'Vector kind']) df = pd.DataFrame(columns=['tsne-2d-one', 'tsne-2d-two', 'Query', 'Vector kind'])
df['tsne-2d-one'] = tsne_results[:, 0] df['tsne-2d-one'] = tsne_results[:, 0]
@ -65,7 +65,7 @@ def plot_df(results, query: str) -> Optional[pd.DataFrame]:
return None return None
def main(method: str, file_path: str): def evaluate(method_name: str, file_path: str) -> tuple[float, float]:
df = search_data.load_data() df = search_data.load_data()
test_set = list(read_ground_truth(file_path, df)) test_set = list(read_ground_truth(file_path, df))
@ -75,7 +75,7 @@ def main(method: str, file_path: str):
dfs = [] dfs = []
for query, expected in tqdm.tqdm(test_set): for query, expected in tqdm.tqdm(test_set):
search_results = search_data.search(query, method, df) search_results = search_data.search(query, method_name, df)
df_q = plot_df(search_results, query) df_q = plot_df(search_results, query)
if df_q is not None: if df_q is not None:
@ -96,10 +96,13 @@ def main(method: str, file_path: str):
if not os.path.isdir(OUT_DIR): if not os.path.isdir(OUT_DIR):
os.makedirs(OUT_DIR) os.makedirs(OUT_DIR)
output = "Precision: {0:.2f}%\nRecall: {0:.2f}%\n".format(precision_sum * 100 / len(test_set)) precision = precision_sum * 100 / len(test_set)
recall = recall_sum * 100 / len(test_set)
output = "Precision: {0:.2f}%\nRecall: {1:.2f}%\n".format(precision, recall)
print(output) print(output)
with open(os.path.join(OUT_DIR, "{0}_prec_recall.txt".format(method)), "w") as f: with open(os.path.join(OUT_DIR, "{0}_prec_recall.txt".format(method_name)), "w") as f:
f.write(output) f.write(output)
if len(dfs) > 0: if len(dfs) > 0:
@ -114,12 +117,33 @@ def main(method: str, file_path: str):
legend="full", legend="full",
alpha=1.0 alpha=1.0
) )
plt.savefig(os.path.join(OUT_DIR, "{0}_plot.png".format(method))) plt.savefig(os.path.join(OUT_DIR, "{0}_plot.png".format(method_name)))
return precision, recall
def main():
methods = ["tfidf", "freq", "lsi", "doc2vec"]
parser = argparse.ArgumentParser()
parser.add_argument("method", help="the method to compare similarities with", type=str, choices=methods + ["all"])
parser.add_argument("ground_truth_file", help="file where ground truth comes from", type=str)
args = parser.parse_args()
if args.method == "all":
df = pd.DataFrame(columns=["Engine", "Average Precision", "Average Recall"])
for i, method in enumerate(methods):
print(f"Applying method {method}:")
precision, recall = evaluate(method, args.ground_truth_file)
df.loc[i, "Engine"] = method
df.loc[i, "Average Precision"] = f"{precision:.2f}%"
df.loc[i, "Average Recall"] = f"{recall:.2f}%"
print(df.to_markdown(index=False))
else:
evaluate(args.method, args.ground_truth_file)
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() main()
parser.add_argument("method", help="the method to compare similarities with", type=str)
parser.add_argument("ground_truth_file", help="file where ground truth comes from", type=str)
args = parser.parse_args()
main(args.method, args.ground_truth_file)

110
report/main.tex Normal file
View file

@ -0,0 +1,110 @@
%!TEX TS-program = pdflatexmk
\documentclass{article}
\usepackage{algorithm}
\usepackage{textcomp}
\usepackage{xcolor}
\usepackage{soul}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{microtype}
\usepackage{rotating}
\usepackage{graphicx}
\usepackage{paralist}
\usepackage{tabularx}
\usepackage{multicol}
\usepackage{multirow}
\usepackage{pbox}
\usepackage{enumitem}
\usepackage{colortbl}
\usepackage{pifont}
\usepackage{xspace}
\usepackage{url}
\usepackage{tikz}
\usepackage{fontawesome}
\usepackage{lscape}
\usepackage{listings}
\usepackage{color}
\usepackage{anyfontsize}
\usepackage{comment}
\usepackage{soul}
\usepackage{multibib}
\usepackage{float}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{hyperref}
\title{Knowledge Management and Analysis \\ Project 01: Code Search}
\author{Claudio Maggioni}
\date{}
\begin{document}
\maketitle
\subsection*{Section 1 - Data Extraction}
The data extraction process scans through the files in the TensorFlow project to extract Python docstrings and symbol
names for functions, classes and methods. A summary of the number of features extracted can be found in
table~\ref{tab:count1}.
Report and comment figures about the extracted data (e.g., number of files; number of code
entities of different kinds).
\begin{table}[H]
\centering \scriptsize
\begin{tabular}{cccc}
\hline
Type & Number \\
\hline
Python files & ? \\
Classes & ? \\
Functions & ? \\
Methods & ? \\
\hline
\end{tabular}
\caption{Count of created classes and properties.}
\label{tab:count1}
\end{table}
\subsection*{Section 2: Training of search engines}
Report and comment an example of a query and the results.
\subsection*{Section 3: Evaluation of search engines}
Using the ground truth provided, evaluate and report recall and average precision for each of the four search engines; comment the differences among search engines.
\begin{table} [H]
\centering \scriptsize
\begin{tabular}{cccc}
\hline
Engine & Avg Precision & Recall \\
\hline
Frequencies & ? & ? \\
TD-IDF & ? & ? \\
LSI & ? & ? \\
Doc2Vec & ? & ? \\
\hline
\end{tabular}
\caption{Evaluation of search engines.}
\label{tab:tab2}
\end{table}
\subsection*{Section 4: Visualisation of query results}
Include, comment and compare the t-SNE plots for LSI and for Doc2Vec.
\begin{figure}[H]
\begin{center}
\includegraphics[width=0.3\textwidth]{Figures/dummy_pic.png}
\caption{Caption.}
\label{fig:fig1}
\end{center}
\end{figure}
\end{document}

View file

@ -2,7 +2,8 @@ coloredlogs==15.0.1
gensim==4.3.2 gensim==4.3.2
nltk==3.8.1 nltk==3.8.1
numpy==1.26.1 numpy==1.26.1
pandas==2.1.1 pandas==2.1.2
tqdm==4.66.1 tqdm==4.66.1
scikit-learn==1.3.2 scikit-learn==1.3.2
seaborn==0.13.0 seaborn==0.13.0
tabulate==0.9.0

View file

@ -3,6 +3,7 @@ import logging
import os import os
import re import re
import typing import typing
from collections import defaultdict
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional from typing import Optional
@ -16,7 +17,7 @@ from gensim.models.doc2vec import TaggedDocument, Doc2Vec
from gensim.similarities import SparseMatrixSimilarity from gensim.similarities import SparseMatrixSimilarity
from nltk.corpus import stopwords from nltk.corpus import stopwords
nltk.download('stopwords') nltk.download('stopwords', quiet=True)
SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__)) SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__))
IN_DATASET = os.path.join(SCRIPT_DIR, "data.csv") IN_DATASET = os.path.join(SCRIPT_DIR, "data.csv")
@ -24,32 +25,35 @@ DOC2VEC_MODEL = os.path.join(SCRIPT_DIR, "doc2vec_model.dat")
# using nltk stop words and example words for now # using nltk stop words and example words for now
STOP_WORDS = set(stopwords.words('english')) \ STOP_WORDS = set(stopwords.words('english')) \
.union(['test', 'tests', 'main', 'this', 'self']) .union(['test', 'tests', 'main', 'this', 'self', 'def', 'object', 'false', 'class', 'tuple', 'use', 'default',
'none', 'dtype', 'true', 'function', 'returns', 'int', 'get', 'set', 'new', 'return', 'list', 'python',
'numpy', 'type', 'name'])
def find_all(regex, word): def find_all(regex: str, word: str, lower=True) -> list[str]:
matches = re.finditer(regex, word) matches = re.finditer(regex, word)
return [m.group(0).lower() for m in matches] return [m.group(0).lower() if lower else m.group(0) for m in matches]
# https://stackoverflow.com/a/29920015 # https://stackoverflow.com/a/29920015
def camel_case_split(word): def camel_case_split(word: str) -> list[str]:
return find_all('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', word) return find_all('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', word)
def identifier_split(identifier): def identifier_split(identifier: str) -> list[str]:
return [y for x in identifier.split("_") for y in camel_case_split(x)] return [y for x in identifier.split("_") for y in camel_case_split(x)]
def comment_split(comment): def comment_split(comment: str) -> list[str]:
return find_all('[A-Za-z0-9]+', comment) # Camel case split within "words" found takes care of referenced type names in the docstring comment
return [s for word in find_all('[A-Za-z]+', comment, lower=False) for s in camel_case_split(word)]
def remove_stopwords(input_bow_list): def remove_stopwords(input_bow_list: list[str]) -> list[str]:
return [word for word in input_bow_list if word not in STOP_WORDS] return [word for word in input_bow_list if word not in STOP_WORDS and len(word) > 2]
def get_bow(data, split_f): def get_bow(data: Optional[float | str], split_f) -> list[str]:
if data is None or (type(data) == float and np.isnan(data)): if data is None or (type(data) == float and np.isnan(data)):
return [] return []
return remove_stopwords(split_f(data)) return remove_stopwords(split_f(data))
@ -83,17 +87,31 @@ def print_results(indexes_scores: list[tuple[int, float]], df):
def build_doc2vec_model(corpus_list): def build_doc2vec_model(corpus_list):
dvdocs = [TaggedDocument(text, [i]) for i, text in enumerate(corpus_list)] dvdocs = [TaggedDocument(text, [i]) for i, text in enumerate(corpus_list)]
model = Doc2Vec(vector_size=100, epochs=100, sample=1e-5) model = Doc2Vec(vector_size=300, epochs=50, sample=0)
model.build_vocab(dvdocs) model.build_vocab(dvdocs)
model.train(dvdocs, total_examples=model.corpus_count, epochs=model.epochs) model.train(dvdocs, total_examples=model.corpus_count, epochs=model.epochs)
model.save(DOC2VEC_MODEL) model.save(DOC2VEC_MODEL)
return model return model
def load_data() -> pd.DataFrame: def load_data(print_frequent=False) -> pd.DataFrame:
df = pd.read_csv(IN_DATASET, index_col=0) df = pd.read_csv(IN_DATASET, index_col=0)
df["name_bow"] = df["name"].apply(lambda n: get_bow(n, identifier_split)) df["name_bow"] = df["name"].apply(lambda n: get_bow(n, identifier_split))
df["comment_bow"] = df["comment"].apply(lambda c: get_bow(c, comment_split)) df["comment_bow"] = df["comment"].apply(lambda c: get_bow(c, comment_split))
if print_frequent:
freq = defaultdict(int)
for bow in df["name_bow"].tolist():
for i in bow:
freq[i] += 1
for bow in df["comment_bow"].tolist():
for i in bow:
freq[i] += 1
for key, value in sorted(freq.items(), key=lambda k: k[1], reverse=True)[:100]:
print(f"{value}: {key}")
return df return df
@ -164,17 +182,31 @@ def search(query: str, method: str, df: pd.DataFrame) -> SearchResults:
def main(): def main():
methods = ["tfidf", "freq", "lsi", "doc2vec"]
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("method", help="the method to compare similarities with", type=str) parser.add_argument("method", help="the method to compare similarities with", type=str,
choices=methods + ["all"])
parser.add_argument("query", help="the query to search the corpus with", type=str) parser.add_argument("query", help="the query to search the corpus with", type=str)
parser.add_argument("-v", "--verbose", help="enable verbose logging", action='store_true')
args = parser.parse_args() args = parser.parse_args()
if args.verbose:
coloredlogs.install()
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
df = load_data() df = load_data()
results = search(args.query, args.method, df)
print_results(results.indexes_scores, df) if args.method == "all":
for method in methods:
print(f"Applying method {method}:")
results = search(args.query, method, df)
print_results(results.indexes_scores, df)
print()
else:
results = search(args.query, args.method, df)
print_results(results.indexes_scores, df)
if __name__ == "__main__": if __name__ == "__main__":
coloredlogs.install()
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
main() main()