kse-01/tensorflow/third_party/nccl/nccl_configure.bzl
github-classroom[bot] 1122cdd8b0
Initial commit
2023-10-09 11:37:31 +00:00

165 lines
4.9 KiB (Stored with Git LFS)
Python

"""Repository rule for NCCL configuration.
`nccl_configure` depends on the following environment variables:
* `TF_NCCL_VERSION`: Installed NCCL version or empty to build from source.
* `NCCL_INSTALL_PATH` (deprecated): The installation path of the NCCL library.
* `NCCL_HDR_PATH` (deprecated): The installation path of the NCCL header
files.
* `TF_CUDA_PATHS`: The base paths to look for CUDA and cuDNN. Default is
`/usr/local/cuda,usr/`.
"""
load(
"//third_party/gpus:cuda_configure.bzl",
"enable_cuda",
"find_cuda_config",
)
load(
"//third_party/remote_config:common.bzl",
"config_repo_label",
"get_cpu_value",
"get_host_environ",
)
_CUDA_TOOLKIT_PATH = "CUDA_TOOLKIT_PATH"
_NCCL_HDR_PATH = "NCCL_HDR_PATH"
_NCCL_INSTALL_PATH = "NCCL_INSTALL_PATH"
_TF_CUDA_COMPUTE_CAPABILITIES = "TF_CUDA_COMPUTE_CAPABILITIES"
_TF_NCCL_VERSION = "TF_NCCL_VERSION"
_TF_NEED_CUDA = "TF_NEED_CUDA"
_DEFINE_NCCL_MAJOR = "#define NCCL_MAJOR"
_DEFINE_NCCL_MINOR = "#define NCCL_MINOR"
_DEFINE_NCCL_PATCH = "#define NCCL_PATCH"
_NCCL_DUMMY_BUILD_CONTENT = """
filegroup(
name = "LICENSE",
visibility = ["//visibility:public"],
)
cc_library(
name = "nccl",
visibility = ["//visibility:public"],
)
"""
_NCCL_ARCHIVE_BUILD_CONTENT = """
filegroup(
name = "LICENSE",
data = ["@nccl_archive//:LICENSE.txt"],
visibility = ["//visibility:public"],
)
alias(
name = "nccl",
actual = "@nccl_archive//:nccl",
visibility = ["//visibility:public"],
)
"""
def _label(file):
return Label("//third_party/nccl:{}".format(file))
def _create_local_nccl_repository(repository_ctx):
# Resolve all labels before doing any real work. Resolving causes the
# function to be restarted with all previous state being lost. This
# can easily lead to a O(n^2) runtime in the number of labels.
# See https://github.com/tensorflow/tensorflow/commit/62bd3534525a036f07d9851b3199d68212904778
find_cuda_config_path = repository_ctx.path(Label("@org_tensorflow//third_party/gpus:find_cuda_config.py.gz.base64"))
nccl_version = get_host_environ(repository_ctx, _TF_NCCL_VERSION, "")
if nccl_version:
nccl_version = nccl_version.split(".")[0]
cuda_config = find_cuda_config(repository_ctx, find_cuda_config_path, ["cuda"])
cuda_version = cuda_config["cuda_version"].split(".")
cuda_major = cuda_version[0]
cuda_minor = cuda_version[1]
if nccl_version == "":
# Alias to open source build from @nccl_archive.
repository_ctx.file("BUILD", _NCCL_ARCHIVE_BUILD_CONTENT)
config_wrap = {
"%{use_bin2c_path}": "False",
}
if (int(cuda_major), int(cuda_minor)) <= (10, 1):
config_wrap["%{use_bin2c_path}"] = "True"
repository_ctx.template(
"build_defs.bzl",
_label("build_defs.bzl.tpl"),
config_wrap,
)
else:
# Create target for locally installed NCCL.
config = find_cuda_config(repository_ctx, find_cuda_config_path, ["nccl"])
config_wrap = {
"%{nccl_version}": config["nccl_version"],
"%{nccl_header_dir}": config["nccl_include_dir"],
"%{nccl_library_dir}": config["nccl_library_dir"],
}
repository_ctx.template("BUILD", _label("system.BUILD.tpl"), config_wrap)
def _create_remote_nccl_repository(repository_ctx, remote_config_repo):
repository_ctx.template(
"BUILD",
config_repo_label(remote_config_repo, ":BUILD"),
{},
)
nccl_version = get_host_environ(repository_ctx, _TF_NCCL_VERSION, "")
if nccl_version == "":
repository_ctx.template(
"build_defs.bzl",
config_repo_label(remote_config_repo, ":build_defs.bzl"),
{},
)
def _nccl_autoconf_impl(repository_ctx):
if (not enable_cuda(repository_ctx) or
get_cpu_value(repository_ctx) not in ("Linux", "FreeBSD")):
# Add a dummy build file to make bazel query happy.
repository_ctx.file("BUILD", _NCCL_DUMMY_BUILD_CONTENT)
elif get_host_environ(repository_ctx, "TF_NCCL_CONFIG_REPO") != None:
_create_remote_nccl_repository(repository_ctx, get_host_environ(repository_ctx, "TF_NCCL_CONFIG_REPO"))
else:
_create_local_nccl_repository(repository_ctx)
_ENVIRONS = [
_CUDA_TOOLKIT_PATH,
_NCCL_HDR_PATH,
_NCCL_INSTALL_PATH,
_TF_NCCL_VERSION,
_TF_CUDA_COMPUTE_CAPABILITIES,
_TF_NEED_CUDA,
"TF_CUDA_PATHS",
]
remote_nccl_configure = repository_rule(
implementation = _create_local_nccl_repository,
environ = _ENVIRONS,
remotable = True,
attrs = {
"environ": attr.string_dict(),
},
)
nccl_configure = repository_rule(
implementation = _nccl_autoconf_impl,
environ = _ENVIRONS,
)
"""Detects and configures the NCCL configuration.
Add the following to your WORKSPACE FILE:
```python
nccl_configure(name = "local_config_nccl")
```
Args:
name: A unique name for this workspace rule.
"""