139 lines
4.4 KiB
Python
139 lines
4.4 KiB
Python
|
import os
|
||
|
from typing import Callable
|
||
|
|
||
|
from deap import creator, base, tools, algorithms
|
||
|
|
||
|
import fuzzer
|
||
|
import instrument
|
||
|
from fuzzer import get_test_cases, get_test_class
|
||
|
import frozendict
|
||
|
|
||
|
INDMUPROB = 0.05
|
||
|
MUPROB = 0.1
|
||
|
CXPROB = 0.5
|
||
|
TOURNSIZE = 3
|
||
|
NPOP = 300
|
||
|
NGEN = 200
|
||
|
REPS = 10
|
||
|
|
||
|
to_test: str = ""
|
||
|
|
||
|
OUT_DIR = os.path.join(os.path.dirname(__file__), "tests")
|
||
|
|
||
|
|
||
|
def normalize(x):
|
||
|
return x / (1.0 + x)
|
||
|
|
||
|
|
||
|
def get_test_case_generator(f_name: str, arguments: list[instrument.Arg]) -> Callable[[], list]:
|
||
|
return lambda: list(list(get_test_cases(f_name, arguments, 1, enable_bar=False))[0].items())
|
||
|
|
||
|
|
||
|
def generate(f_name: str):
|
||
|
global to_test
|
||
|
to_test = f_name
|
||
|
|
||
|
creator.create("Fitness", base.Fitness, weights=(-1.0,))
|
||
|
creator.create("Individual", list, fitness=creator.Fitness)
|
||
|
|
||
|
n_initial = 10
|
||
|
|
||
|
args = instrument.functions[f_name]
|
||
|
|
||
|
toolbox = base.Toolbox()
|
||
|
toolbox.register("attr_test_case", get_test_case_generator(to_test, instrument.functions[to_test]))
|
||
|
toolbox.register("individual",
|
||
|
tools.initRepeat,
|
||
|
creator.Individual,
|
||
|
toolbox.attr_test_case,
|
||
|
n=n_initial)
|
||
|
toolbox.register("population",
|
||
|
tools.initRepeat,
|
||
|
list,
|
||
|
toolbox.individual)
|
||
|
toolbox.register("evaluate", fitness)
|
||
|
|
||
|
def mate(tc1, tc2):
|
||
|
t1, t2 = frozendict.frozendict(tc1), frozendict.frozendict(tc2)
|
||
|
|
||
|
print("ticino", tc1, tc2)
|
||
|
o1, o2 = fuzzer.crossover(t1, t2, args)
|
||
|
i1, i2 = creator.Individual(o1.items()), creator.Individual(o2.items())
|
||
|
print("mate", i1, i2)
|
||
|
return i1, i2
|
||
|
|
||
|
def mutate(tc):
|
||
|
t = frozendict.frozendict(tc)
|
||
|
o = fuzzer.mutate(t, args)
|
||
|
i1 = creator.Individual(o.items())
|
||
|
print("mutate", i1)
|
||
|
return i1,
|
||
|
|
||
|
toolbox.register("mate", mate)
|
||
|
toolbox.register("mutate", mutate)
|
||
|
toolbox.register("select", tools.selTournament, tournsize=TOURNSIZE)
|
||
|
|
||
|
coverage = []
|
||
|
for i in range(REPS):
|
||
|
instrument.archive_true_branches = {}
|
||
|
instrument.archive_false_branches = {}
|
||
|
population = toolbox.population(n=NPOP)
|
||
|
print("population", population)
|
||
|
algorithms.eaSimple(population, toolbox, CXPROB, MUPROB, NGEN, verbose=False)
|
||
|
cov = len(instrument.archive_true_branches) + len(instrument.archive_false_branches)
|
||
|
print(cov, instrument.archive_true_branches, instrument.archive_false_branches)
|
||
|
coverage.append(cov)
|
||
|
|
||
|
print(coverage)
|
||
|
|
||
|
|
||
|
def fitness(individuals: list[list]) -> tuple[float]:
|
||
|
range_start, range_end = instrument.n_of_branches[to_test]
|
||
|
|
||
|
# Reset any distance values from previous executions
|
||
|
instrument.distances_true = {}
|
||
|
instrument.distances_false = {}
|
||
|
|
||
|
fitness = 0.0
|
||
|
for individual in individuals:
|
||
|
x = frozendict.frozendict(individual)
|
||
|
|
||
|
# Run the function under test
|
||
|
try:
|
||
|
out = instrument.invoke(to_test, x)
|
||
|
except AssertionError:
|
||
|
print(to_test, x, "=", "[FAILS]")
|
||
|
return 10000,
|
||
|
|
||
|
# Sum up branch distances
|
||
|
for branch in range(range_start, range_end):
|
||
|
if branch in instrument.distances_true:
|
||
|
if instrument.distances_true[branch] == 0 and branch not in instrument.archive_true_branches:
|
||
|
instrument.archive_true_branches[branch] = x
|
||
|
if branch not in instrument.archive_true_branches:
|
||
|
fitness += normalize(instrument.distances_true[branch])
|
||
|
for branch in range(range_start, range_end):
|
||
|
if branch in instrument.distances_false:
|
||
|
if instrument.distances_false[branch] == 0 and branch not in instrument.archive_false_branches:
|
||
|
instrument.archive_false_branches[branch] = x
|
||
|
if branch not in instrument.archive_false_branches:
|
||
|
fitness += normalize(instrument.distances_false[branch])
|
||
|
print(to_test, x, "=", out)
|
||
|
|
||
|
print("fitness", fitness)
|
||
|
print()
|
||
|
return fitness,
|
||
|
|
||
|
|
||
|
def main():
|
||
|
instrument.load_benchmark(save_instrumented=False) # instrument all files in benchmark
|
||
|
f_name = "railencrypt_instrumented"
|
||
|
generate(f_name)
|
||
|
with open(os.path.join(OUT_DIR, f_name + ".py"), "w") as f:
|
||
|
cases = get_test_cases(f_name, instrument.functions[f_name], 100)
|
||
|
f.write(get_test_class(f_name, cases))
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|