This commit is contained in:
Claudio Maggioni 2023-12-09 17:56:04 +01:00
parent 7ca85a871d
commit 6bb60c3323
17 changed files with 167 additions and 129 deletions

View file

@ -84,7 +84,7 @@ def random_params(arguments: list[Arg]) -> Params:
pools: dict[tuple, set[tuple]] = {}
def get_pool(arguments: list[Arg]) -> set[Params]:
def get_pool(arguments: list[Arg]) -> list[Params]:
arg_types = tuple([arg_type for _, arg_type in arguments])
arg_names = [arg_name for arg_name, _ in arguments]
@ -103,7 +103,7 @@ def get_pool(arguments: list[Arg]) -> set[Params]:
pools[arg_types] = new_pool
return set([frozendict({arg_names[i]: p for i, p in enumerate(param)}) for param in pools[arg_types]])
return [frozendict({arg_names[i]: p for i, p in enumerate(param)}) for param in pools[arg_types]]
def mutate(test_case: Params, arguments: list[Arg]) -> Params:
@ -132,7 +132,7 @@ def crossover(chosen_test: Params, other_chosen_test: Params, arguments: list[Ar
def generate_test_case(f_name: str, arguments: list[Arg]) -> Params:
pool: set[Params] = get_pool(arguments)
pool: list[Params] = get_pool(arguments)
while True:
test = sample(pool, 1)[0]

View file

@ -1,6 +1,8 @@
import argparse
import os
import random
import sys
from functools import partial
import frozendict
import tqdm
@ -8,6 +10,7 @@ from deap import creator, base, tools, algorithms
import fuzzer
import instrument
import operators
from fuzzer import generate_test_case, get_test_class
INDMUPROB = 0.05
@ -18,11 +21,32 @@ NPOP = 1000
NGEN = 200
REPS = 10
to_test: str = ""
OUT_DIR = os.path.join(os.path.dirname(__file__), "tests")
class Archive:
true_branches: dict[int, any]
false_branches: dict[int, any]
def __init__(self):
self.reset()
def reset(self):
self.true_branches = {}
self.false_branches = {}
def branches_covered(self) -> int:
return len(self.true_branches.keys()) + len(self.false_branches.keys())
def branches_str(self) -> str:
branch_ids = sorted([f"{branch:2d}T" for branch in self.true_branches.keys()] +
[f"{branch:2d}F" for branch in self.false_branches.keys()])
return ' '.join([branch.strip() for branch in branch_ids])
def build_suite(self) -> set[instrument.Params]:
return set(list(self.true_branches.values()) + list(self.false_branches.values()))
def normalize(x):
return x / (1.0 + x)
@ -32,25 +56,19 @@ def init_deap():
creator.create("Individual", list, fitness=creator.Fitness)
def taken_branches_descriptor() -> str:
branch_ids = sorted([f"{branch:2d}T" for branch in instrument.archive_true_branches.keys()] +
[f"{branch:2d}F" for branch in instrument.archive_false_branches.keys()])
return ' '.join([branch.strip() for branch in branch_ids])
def generate(f_name: str):
global to_test
to_test = f_name
orig_name = instrument.BranchTransformer.to_original_name(f_name)
args = instrument.functions[f_name]
range_start, range_end = instrument.n_of_branches[f_name]
total_branches = (range_end - range_start) * 2 # *2 because of True and False
archive = Archive()
toolbox = base.Toolbox()
toolbox.register("attr_test_case", lambda: list(generate_test_case(f_name, args).items()))
toolbox.register("individual", tools.initIterate, creator.Individual, lambda: toolbox.attr_test_case())
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", compute_fitness)
toolbox.register("evaluate", partial(compute_fitness, f_name, archive))
def mate(tc1, tc2):
t1, t2 = frozendict.frozendict(tc1), frozendict.frozendict(tc2)
@ -71,44 +89,33 @@ def generate(f_name: str):
top_result = set()
top_coverage = 0
range_start, range_end = instrument.n_of_branches[to_test]
total_branches = (range_end - range_start) * 2 # *2 because of True and False
coverage = []
for i in range(REPS):
instrument.archive_true_branches = {}
instrument.archive_false_branches = {}
archive.reset()
population = toolbox.population(n=NPOP)
algorithms.eaSimple(population, toolbox, CXPROB, MUPROB, NGEN, verbose=False)
true_covered = len(instrument.archive_true_branches.keys())
false_covered = len(instrument.archive_false_branches.keys())
tot_covered = true_covered + false_covered
tot_covered = archive.branches_covered()
cov: float = (tot_covered / total_branches) * 100
coverage.append(cov)
branches = taken_branches_descriptor()
branches = archive.branches_str()
print(f"{orig_name}: rep #{i:02d}: Cov: {cov:02.02f}% ({tot_covered}/{total_branches} branches): {branches}")
if cov > top_coverage:
top_result = set(list(instrument.archive_true_branches.values()) +
list(instrument.archive_false_branches.values()))
top_result = archive.build_suite()
top_coverage = cov
print(coverage)
return top_result
def compute_fitness(individual: list) -> tuple[float]:
def compute_fitness(f_name: str, archive: Archive, individual: list) -> tuple[float]:
x = frozendict.frozendict(individual)
range_start, range_end = instrument.n_of_branches[to_test]
range_start, range_end = instrument.n_of_branches[f_name]
# Reset any distance values from previous executions
instrument.distances_true = {}
instrument.distances_false = {}
operators.distances_true = {}
operators.distances_false = {}
# the archive_true_branches and archive_false_branches are reset after
# each generation. This is intentional as they are used to archive branches that
@ -117,7 +124,7 @@ def compute_fitness(individual: list) -> tuple[float]:
# Run the function under test
try:
out = instrument.invoke(to_test, x)
instrument.invoke(f_name, x)
except AssertionError:
# print(to_test, x, "=", "[FAILS] fitness = 100.0")
return 100.0,
@ -126,18 +133,18 @@ def compute_fitness(individual: list) -> tuple[float]:
# Sum up branch distances
for branch in range(range_start, range_end):
if branch in instrument.distances_true:
if instrument.distances_true[branch] == 0 and branch not in instrument.archive_true_branches:
instrument.archive_true_branches[branch] = x
if branch not in instrument.archive_true_branches:
fitness += normalize(instrument.distances_true[branch])
if branch in operators.distances_true:
if operators.distances_true[branch] == 0 and branch not in archive.true_branches:
archive.true_branches[branch] = x
if branch not in archive.true_branches:
fitness += normalize(operators.distances_true[branch])
for branch in range(range_start, range_end):
if branch in instrument.distances_false:
if instrument.distances_false[branch] == 0 and branch not in instrument.archive_false_branches:
instrument.archive_false_branches[branch] = x
if branch not in instrument.archive_false_branches:
fitness += normalize(instrument.distances_false[branch])
if branch in operators.distances_false:
if operators.distances_false[branch] == 0 and branch not in archive.false_branches:
archive.false_branches[branch] = x
if branch not in archive.false_branches:
fitness += normalize(operators.distances_false[branch])
# print(to_test, x, "=", out, "fitness =", fitness)
return fitness,
@ -146,13 +153,20 @@ def compute_fitness(individual: list) -> tuple[float]:
def build_suite(f_name: str):
instr_name = instrument.BranchTransformer.to_instrumented_name(f_name)
cases = generate(instr_name)
with open(os.path.join(OUT_DIR, f_name + ".py"), "w") as f:
with open(os.path.join(OUT_DIR, "test_" + f_name + ".py"), "w") as f:
f.write(get_test_class(instr_name, cases))
def main():
random.seed(0) # init random seed
instrument.load_benchmark(save_instrumented=False) # instrument all files in benchmark
parser = argparse.ArgumentParser(prog='genetic.py',
description='Runs genetic algorithm for test case generation. Works on benchmark '
'files situated in the \'benchmark\' directory.')
parser.add_argument('file', type=str, help="File to test",
nargs="*")
instrument.load_benchmark(save_instrumented=False, files=parser.parse_args().file)
init_deap()
for instr_f in tqdm.tqdm(sorted(instrument.functions.keys()), desc="Generating tests"):

View file

@ -1,28 +1,18 @@
from typing import Optional
import ast
import os.path
import sys
from typing import Optional
import astunparse
import tqdm
from frozendict import frozendict
from operators import evaluate_condition
import ast
import astunparse
import sys
import random
from operators import compute_distances
# hyperparameters
ROOT_DIR: str = os.path.dirname(__file__)
IN_DIR: str = os.path.join(ROOT_DIR, 'benchmark')
OUT_DIR: str = os.path.join(ROOT_DIR, 'instrumented')
SUFFIX: str = "_instrumented"
distances_true: dict[int, int] = {}
distances_false: dict[int, int] = {}
# Archive of solutions
archive_true_branches: dict[int, any] = {}
archive_false_branches: dict[int, any] = {}
class BranchTransformer(ast.NodeTransformer):
branches_range: dict[str, tuple[int, int]]
@ -78,7 +68,7 @@ class BranchTransformer(ast.NodeTransformer):
return self.generic_visit(ast_node)
self.branch_num += 1
return ast.Call(func=ast.Name("evaluate_condition", ast.Load()),
return ast.Call(func=ast.Name(evaluate_condition.__name__, ast.Load()),
args=[ast.Num(self.branch_num),
ast.Str(ast_node.ops[0].__class__.__name__),
ast_node.left,
@ -88,41 +78,6 @@ class BranchTransformer(ast.NodeTransformer):
kwargs=None)
def update_maps(condition_num, d_true, d_false):
global distances_true, distances_false
if condition_num in distances_true.keys():
distances_true[condition_num] = min(distances_true[condition_num], d_true)
else:
distances_true[condition_num] = d_true
if condition_num in distances_false.keys():
distances_false[condition_num] = min(distances_false[condition_num], d_false)
else:
distances_false[condition_num] = d_false
def evaluate_condition(num, op, lhs, rhs): # type: ignore
if op == "In":
if isinstance(lhs, str):
lhs = ord(lhs)
minimum = sys.maxsize
for elem in rhs.keys():
distance = abs(lhs - ord(elem))
if distance < minimum:
minimum = distance
distance_true, distance_false = minimum, 1 if minimum == 0 else 0
else:
distance_true, distance_false = compute_distances(op, lhs, rhs)
update_maps(num, distance_true, distance_false)
# distance == 0 equivalent to actual test by construction
return distance_true == 0
ArgType = str
Arg = tuple[str, ArgType]
Params = frozendict[str, any]
@ -203,9 +158,14 @@ def find_py_files(search_dir: str):
yield os.path.join(cwd, file)
def load_benchmark(save_instrumented=True):
def load_benchmark(save_instrumented=True, files: list[str] = ()):
to_load = set([os.path.splitext(os.path.basename(file))[0] + ".py" for file in files])
do_all = len(to_load) == 0
for file in tqdm.tqdm(find_py_files(IN_DIR), desc="Instrumenting"):
instrument(file, os.path.join(OUT_DIR, os.path.basename(file)), save_instrumented=save_instrumented)
filename = os.path.basename(file)
if do_all or filename in to_load:
instrument(file, os.path.join(OUT_DIR, filename), save_instrumented=save_instrumented)
def call_statement(f_name: str, f_args: Params) -> str:

View file

@ -1,9 +1,13 @@
import sys
from dataclasses import dataclass
from typing import TypeVar, Callable
from typing import Generic
from typing import TypeVar, Callable
from nltk import edit_distance
distances_true: dict[int, int] = {}
distances_false: dict[int, int] = {}
T = TypeVar('T')
U = TypeVar('U')
@ -100,7 +104,7 @@ def str_check(a: any, b: any) -> bool:
return type(a) == str and type(b) == str
def compute_distances(name: str, lhs: any, rhs: any) -> tuple[int, int]:
def compute_distances(name: str, lhs: any, rhs: any) -> tuple[int, int, bool]:
if int_str_check(lhs, rhs):
lhs_int = int_str_convert(lhs)
rhs_int = int_str_convert(rhs)
@ -109,13 +113,50 @@ def compute_distances(name: str, lhs: any, rhs: any) -> tuple[int, int]:
raise ValueError(f"'{name}' is not a valid CmpOp name for 'int_str' operators")
op = int_str_by_name[name]
return op.true_dist(lhs_int, rhs_int), op.false_dist(lhs_int, rhs_int)
return op.true_dist(lhs_int, rhs_int), op.false_dist(lhs_int, rhs_int), op.test(lhs_int, rhs_int)
if str_check(lhs, rhs):
if name not in str_by_name:
raise ValueError(f"'{name}' is not a valid CmpOp name for 'str' operators")
op = str_by_name[name]
return op.true_dist(lhs, rhs), op.false_dist(lhs, rhs)
return op.true_dist(lhs, rhs), op.false_dist(lhs, rhs), op.test(lhs, rhs)
raise ValueError(f"'{lhs}' and '{rhs}' are not suitable for both 'int_str' and 'str' operators")
def update_map(the_map: dict[int, int], condition_num: int, distance: int):
if condition_num in the_map.keys():
the_map[condition_num] = min(the_map[condition_num], distance)
else:
the_map[condition_num] = distance
def update_maps(condition_num, d_true, d_false):
global distances_true, distances_false
update_map(distances_true, condition_num, d_true)
update_map(distances_false, condition_num, d_false)
def in_op(num, lhs, rhs):
if isinstance(lhs, str):
lhs = ord(lhs)
minimum = sys.maxsize
for elem in rhs.keys():
distance = abs(lhs - ord(elem))
if distance < minimum:
minimum = distance
distance_true, distance_false = minimum, 1 if minimum == 0 else 0
update_maps(num, distance_true, distance_false)
return distance_true == 0 # distance == 0 equivalent to actual test by construction
def evaluate_condition(num, op, lhs, rhs):
if op == "In":
return in_op(num, lhs, rhs)
distance_true, distance_false, test = compute_distances(op, lhs, rhs)
update_maps(num, distance_true, distance_false)
return test

View file

@ -1,6 +1,3 @@
/usr/local/bin/python3.10 /Volumes/Data/git/kse/project-02-python-test-generator-maggicl/genetic.py
Instrumenting: 10it [00:00, 722.61it/s]
Generating tests: 0%| | 0/12 [00:00<?, ?it/s]
anagram_check: rep #00: Cov: 87.50% (7/8 branches): 1F 1T 2F 2T 3F 3T 4F
anagram_check: rep #01: Cov: 87.50% (7/8 branches): 1F 1T 2F 2T 3F 3T 4F
anagram_check: rep #02: Cov: 100.00% (8/8 branches): 1F 1T 2F 2T 3F 3T 4F 4T
@ -11,8 +8,6 @@ anagram_check: rep #06: Cov: 100.00% (8/8 branches): 1F 1T 2F 2T 3F 3T 4F 4T
anagram_check: rep #07: Cov: 100.00% (8/8 branches): 1F 1T 2F 2T 3F 3T 4F 4T
anagram_check: rep #08: Cov: 87.50% (7/8 branches): 1F 1T 2F 2T 3F 3T 4F
anagram_check: rep #09: Cov: 100.00% (8/8 branches): 1F 1T 2F 2T 3F 3T 4F 4T
[87.5, 87.5, 100.0, 87.5, 87.5, 87.5, 100.0, 100.0, 87.5, 100.0]
Generating tests: 8%|▊ | 1/12 [01:05<12:02, 65.64s/it]
cd_count: rep #00: Cov: 100.00% (14/14 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6F 6T 7F 7T
cd_count: rep #01: Cov: 100.00% (14/14 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6F 6T 7F 7T
cd_count: rep #02: Cov: 100.00% (14/14 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6F 6T 7F 7T
@ -23,8 +18,6 @@ cd_count: rep #06: Cov: 100.00% (14/14 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
cd_count: rep #07: Cov: 100.00% (14/14 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6F 6T 7F 7T
cd_count: rep #08: Cov: 100.00% (14/14 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6F 6T 7F 7T
cd_count: rep #09: Cov: 100.00% (14/14 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6F 6T 7F 7T
[100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]
Generating tests: 17%|█▋ | 2/12 [02:30<12:50, 77.04s/it]
check_armstrong: rep #00: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
check_armstrong: rep #01: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
check_armstrong: rep #02: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
@ -35,8 +28,6 @@ check_armstrong: rep #06: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T
check_armstrong: rep #07: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
check_armstrong: rep #08: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
check_armstrong: rep #09: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
[100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]
Generating tests: 25%|██▌ | 3/12 [03:36<10:45, 71.73s/it]
decrypt: rep #00: Cov: 100.00% (2/2 branches): 2F 2T
decrypt: rep #01: Cov: 100.00% (2/2 branches): 2F 2T
decrypt: rep #02: Cov: 100.00% (2/2 branches): 2F 2T
@ -47,8 +38,6 @@ decrypt: rep #06: Cov: 100.00% (2/2 branches): 2F 2T
decrypt: rep #07: Cov: 100.00% (2/2 branches): 2F 2T
decrypt: rep #08: Cov: 100.00% (2/2 branches): 2F 2T
decrypt: rep #09: Cov: 100.00% (2/2 branches): 2F 2T
[100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]
Generating tests: 33%|███▎ | 4/12 [04:49<09:40, 72.50s/it]
encrypt: rep #00: Cov: 100.00% (2/2 branches): 1F 1T
encrypt: rep #01: Cov: 100.00% (2/2 branches): 1F 1T
encrypt: rep #02: Cov: 100.00% (2/2 branches): 1F 1T
@ -59,8 +48,6 @@ encrypt: rep #06: Cov: 100.00% (2/2 branches): 1F 1T
encrypt: rep #07: Cov: 100.00% (2/2 branches): 1F 1T
encrypt: rep #08: Cov: 100.00% (2/2 branches): 1F 1T
encrypt: rep #09: Cov: 100.00% (2/2 branches): 1F 1T
[100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]
Generating tests: 42%|████▏ | 5/12 [06:04<08:31, 73.13s/it]
exponentiation: rep #00: Cov: 62.50% (5/8 branches): 1F 1T 2F 2T 3T
exponentiation: rep #01: Cov: 62.50% (5/8 branches): 1F 1T 2F 2T 3T
exponentiation: rep #02: Cov: 62.50% (5/8 branches): 1F 1T 2F 2T 3T
@ -70,9 +57,6 @@ exponentiation: rep #05: Cov: 62.50% (5/8 branches): 1F 1T 2F 2T 3T
exponentiation: rep #06: Cov: 62.50% (5/8 branches): 1F 1T 2F 2T 3T
exponentiation: rep #07: Cov: 62.50% (5/8 branches): 1F 1T 2F 2T 3T
exponentiation: rep #08: Cov: 62.50% (5/8 branches): 1F 1T 2F 2T 3T
Generating tests: 50%|█████ | 6/12 [07:50<08:26, 84.43s/it]
exponentiation: rep #09: Cov: 62.50% (5/8 branches): 1F 1T 2F 2T 3T
[62.5, 62.5, 62.5, 62.5, 62.5, 62.5, 62.5, 62.5, 62.5, 62.5]
gcd: rep #00: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
gcd: rep #01: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
gcd: rep #02: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
@ -83,8 +67,6 @@ gcd: rep #06: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
gcd: rep #07: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
gcd: rep #08: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
gcd: rep #09: Cov: 100.00% (10/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T
[100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]
Generating tests: 58%|█████▊ | 7/12 [09:09<06:52, 82.57s/it]
longest_sorted_substr: rep #00: Cov: 100.00% (4/4 branches): 1F 1T 2F 2T
longest_sorted_substr: rep #01: Cov: 100.00% (4/4 branches): 1F 1T 2F 2T
longest_sorted_substr: rep #02: Cov: 100.00% (4/4 branches): 1F 1T 2F 2T
@ -94,9 +76,7 @@ longest_sorted_substr: rep #05: Cov: 100.00% (4/4 branches): 1F 1T 2F 2T
longest_sorted_substr: rep #06: Cov: 100.00% (4/4 branches): 1F 1T 2F 2T
longest_sorted_substr: rep #07: Cov: 100.00% (4/4 branches): 1F 1T 2F 2T
longest_sorted_substr: rep #08: Cov: 100.00% (4/4 branches): 1F 1T 2F 2T
Generating tests: 67%|██████▋ | 8/12 [10:19<05:15, 78.78s/it]
longest_sorted_substr: rep #09: Cov: 100.00% (4/4 branches): 1F 1T 2F 2T
[100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]
rabin_karp_search: rep #00: Cov: 90.00% (9/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F
rabin_karp_search: rep #01: Cov: 90.00% (9/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F
rabin_karp_search: rep #02: Cov: 90.00% (9/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F
@ -107,8 +87,6 @@ rabin_karp_search: rep #06: Cov: 90.00% (9/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T
rabin_karp_search: rep #07: Cov: 90.00% (9/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F
rabin_karp_search: rep #08: Cov: 90.00% (9/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F
rabin_karp_search: rep #09: Cov: 90.00% (9/10 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F
[90.0, 90.0, 90.0, 90.0, 90.0, 90.0, 90.0, 90.0, 90.0, 90.0]
Generating tests: 75%|███████▌ | 9/12 [11:32<03:50, 76.96s/it]
raildecrypt: rep #00: Cov: 87.50% (14/16 branches): 5F 5T 6F 6T 7F 8F 8T 9T 10F 10T 11F 11T 12F 12T
raildecrypt: rep #01: Cov: 93.75% (15/16 branches): 5F 5T 6F 6T 7F 7T 8F 8T 9T 10F 10T 11F 11T 12F 12T
raildecrypt: rep #02: Cov: 93.75% (15/16 branches): 5F 5T 6F 6T 7F 7T 8F 8T 9T 10F 10T 11F 11T 12F 12T
@ -119,9 +97,17 @@ raildecrypt: rep #06: Cov: 93.75% (15/16 branches): 5F 5T 6F 6T 7F 7T 8F 8T 9T 1
raildecrypt: rep #07: Cov: 93.75% (15/16 branches): 5F 5T 6F 6T 7F 7T 8F 8T 9T 10F 10T 11F 11T 12F 12T
raildecrypt: rep #08: Cov: 93.75% (15/16 branches): 5F 5T 6F 6T 7F 7T 8F 8T 9T 10F 10T 11F 11T 12F 12T
raildecrypt: rep #09: Cov: 68.75% (11/16 branches): 5T 6F 6T 8F 8T 9T 10F 10T 11F 11T 12T
[87.5, 93.75, 93.75, 87.5, 87.5, 87.5, 93.75, 93.75, 93.75, 68.75]
Generating tests: 83%|████████▎ | 10/12 [17:25<05:24, 162.00s/it]
railencrypt: rep #00: Cov: 100.00% (8/8 branches): 1F 1T 2F 2T 3F 3T 4F 4T
railencrypt: rep #01: Cov: 100.00% (8/8 branches): 1F 1T 2F 2T 3F 3T 4F 4T
railencrypt: rep #02: Cov: 62.50% (5/8 branches): 1T 2F 2T 4F 4T
railencrypt: rep #03: Cov: 100.00% (8/8 branches): 1F 1T 2F 2T 3F 3T 4F 4T
zeller: rep #00: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #01: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #02: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #03: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #04: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #05: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #06: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #07: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #08: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T
zeller: rep #09: Cov: 93.75% (15/16 branches): 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6T 7F 7T 8F 8T

14
tests/test_railencrypt.py Normal file
View file

@ -0,0 +1,14 @@
from unittest import TestCase
from benchmark.railfence_cipher import railencrypt
class Test_railencrypt(TestCase):
def test_railencrypt_1(self):
assert railencrypt(st=')x8ro;BVm', k=865) == ')x8ro;BVm'
def test_railencrypt_2(self):
assert railencrypt(st='q338K a{.', k=4) == 'qa3 {3K.8'
def test_railencrypt_3(self):
assert railencrypt(st='X61*8p', k=5) == 'X61*p8'

23
tests/test_zeller.py Normal file
View file

@ -0,0 +1,23 @@
from unittest import TestCase
from benchmark.zellers_birthday import zeller
class Test_zeller(TestCase):
def test_zeller_1(self):
assert zeller(d=-134, m=797, y=67) == 'Sunday'
def test_zeller_2(self):
assert zeller(d=-156, m=10, y=-57) == 'Wednesday'
def test_zeller_3(self):
assert zeller(d=715, m=444, y=74) == 'Thursday'
def test_zeller_4(self):
assert zeller(d=-726, m=864, y=-16) == 'Thursday'
def test_zeller_5(self):
assert zeller(d=31, m=910, y=2) == 'Sunday'
def test_zeller_6(self):
assert zeller(d=369, m=-917, y=-1000) == 'Sunday'