
Paolo Tonella (Software Institute, Università della Svizzera italiana, Lugano, Switzerland)

Python test generator

1
Icons: flaticon.com

http://flaticon.com

Goal of the project

2

Write a search based automated test generator for Python. The
generator shall maximize condition coverage of the functions under test and

will be compared against a random fuzzer used as baseline.

1. Write an instrumentation script that transforms the Python code under test to
enable computation of the coverage fitness function

2. Develop a fuzzer that generates new test cases randomly or by mutating/
crossing over previously created tests

3. Use the library Deap to define a genetic algorithm that evolves test case inputs
so as to maximize condition coverage

4. Use the tool MutPy to inject artificial faults (mutations) into the benchmark
functions under test and evaluate the fault detection capability of the genetic
algorithm, considering the random fuzzer as baseline

Test generation: representation and initialization

3

The fuzzer and the GA algorithm manipulate inputs consisting of (1) lists of int variables; (2) lists of str variables; (3) key-value pairs of
type (str, int). Type and number of parameters can be found in the signature of the methods under test (see folder benchmark),
which can be assumed to have at most 3 parameters.

[1, 2]

[-1, 2]

[10, 3]

[-3, 4]

[5, -2]

[7, -12]

[‘’]

[‘abc’]

[‘er’]

[‘1sw’]

[`1-%’]

[`$#$’]

[(‘’, 2)]

[(‘aa’, 4)]

[(‘w$#’, -3)]

[(‘ws’, 6)]

[(‘gh’, -2)]

[(‘9o97’, 12)]

f_instrumented(a: int, b: int) f_instrumented(a: str) f_instrumented(a: str, b: int)

For the initialization of int variables, choose a random integer between MIN_INT and MAX_INT (e.g., -1000, 1000). For the initialization of
str variables, choose a random string length between 0 and MAX_STRING_LENGTH (e.g., 10) and fill the string with random lowercase
alphabetic characters (in the ASCII range [97:122]). For the initialization of key-value pairs, use respectively the random string and random
integer initialisers. The initial string pool and the int pool are initialized with POOL_SIZE (e.g., 1000) random values.

Test generation: mutation

4

The mutation operator randomly changes any of the int or str values in the list; it changes either key or value when the individual is a
key-value pair.

[1, 2]

[-1, 2]

[10, 3]

[-3, 4]

[5, -2]

[7, -12]

[‘’]

[‘abc’]

[‘er’]

[‘1sw’]

[`1-%’]

[`$#$’]

[(‘’, 2)]

[(‘aa’, 4)]

[(‘w$#’, -3)]

[(‘ws’, 6)]

[(‘gh’, -2)]

[(‘9o97’, 12)]

[5, 2]

[-7, 1]

[10, 5]

[7, 4]

[5, -8]

[7, 32]

[‘’]

[‘atc’]

[‘yr’]

[‘#sw’]

[`1%%’]

[`8#$’]

[(‘’, 6)]

[(‘ta’, 4)]

[(‘w*#’, -3)]

[(‘ws’, 7)]

[(‘gh’, -8)]

[(‘9p97’, 12)]

Test generation: crossover

5

The crossover operator randomly swaps the tails of two lists of int; randomly swaps the tails of two strings randomly chosen from two
lists of str; randomly swaps the tails of the two keys of two key-value pairs

[1, 2]

[-1, 2]

[10, 3]

[-3, 4]

[5, -2]

[7, -12]

[‘’]

[‘abc’]

[‘er’]

[‘1sw’]

[`1-%’]

[`$#$’]

[(‘’, 2)]

[(‘aa’, 4)]

[(‘w$#’, -3)]

[(‘ws’, 6)]

[(‘gh’, -2)]

[(‘9o97’, 12)]

[1, 2]

[-1, 2]

[10, 4]

[-3, 3]

[5, -12]

[7, -2]

[‘’]

[‘abc’]

[‘esw’]

[‘1r’]

[`1-$’]

[`$#%’]

[(‘’, 2)]

[(‘aa’, 4)]

[(‘ws’, -3)]

[(‘w$#’, 6)]

[(‘go97’, -2)]

[(‘9h’, 12)]

Fuzzer: test generation

6

New test inputs are randomly generated (with the same 1/3 probability) by: (1) using the random initialisers; (2) mutating inputs stored in
the pool; (3) crossing over pairs of inputs stored in the pool. The int/str pool is initialized with POOL_SIZE random values and is then
extended with any newly generated value.

pool mutation
cross

over

1/3 1/3

1/3

[270, 966]

[270, 966]
[220, 966]

[270, 966]

[10, -1]

[270, -1]

[10, 966]

Fuzzer: test execution

7

After dynamically loading the instrumented files (e.g., by parse/compile/exec; see sb_cgi_decode.py:194-196), to execute the function
under test e.g. with two integer parameters equal to 270, 966, use: globals()[‘f_instrumented’](270, 966)

Upon execution collect both the input parameter values into some string variable in and the output value into a dictionary out[in], as
these values are needed for test case generation:

def test_f_1(self):
y = f(270, 966)
assert y == 966

value of in = “270, 966”

value of out[in] = 966

To ensure that the output value is printable into a test case oracle, make sure to escape characters with special meaning in string. For
instance: out[in] = out[in].replace(‘\\’, '\\\\').replace('"', '\\"')

Fuzzer: generated test cases

8

Only test cases that increase condition coverage are kept in the archive and are reported as output test cases.

In the generated tests, the original function (e.g., f), not the instrumented one (e.g., f_instrumented) is called.

from unittest import TestCase

class Test_example(TestCase):
def test_f_1(self):

y = f(270, 966)
assert y == 966

def test_f_2(self):
y = f(442, 202)
assert y == 442

def test_f_3(self):
y = f(-270, -61)
assert y == -61

def test_f_4(self):
y = f(-413, 414)
assert y == 414

def test_f_5(self):
y = f(252, -209)
assert y == 252

example_tests.py

testgen_random.py

from instrumentor import evaluate_condition

def f_instrumented(a: int, b: int) -> int:
 if evaluate_condition(1, 'Gt', a, 0):
 if evaluate_condition(2, 'Lt', b, 0):
 return a
 if evaluate_condition(3, 'Gt', b, 0):
 if evaluate_condition(4, 'Lt', a, 0):
 return b
 if evaluate_condition(5, 'Gt', a, b):
 return a
 else:
 return b

example_instrumented.py

Paolo Tonella
Software Institute, Università della Svizzera italiana, Lugano, Switzerland

Python test generator

9

