import os from typing import Callable import frozendict from deap import creator, base, tools, algorithms import fuzzer import instrument from fuzzer import get_test_cases, get_test_class INDMUPROB = 0.05 MUPROB = 0.1 CXPROB = 0.5 TOURNSIZE = 3 NPOP = 300 NGEN = 200 REPS = 10 to_test: str = "" OUT_DIR = os.path.join(os.path.dirname(__file__), "tests") def normalize(x): return x / (1.0 + x) def get_test_case_generator(f_name: str, arguments: list[instrument.Arg]) -> Callable[[], list]: return lambda: list(list(get_test_cases(f_name, arguments, 1, enable_bar=False))[0].items()) def generate(f_name: str): global to_test to_test = f_name creator.create("Fitness", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.Fitness) args = instrument.functions[f_name] toolbox = base.Toolbox() toolbox.register("attr_test_case", get_test_case_generator(to_test, instrument.functions[to_test])) toolbox.register("individual", tools.initIterate, creator.Individual, lambda: toolbox.attr_test_case()) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("evaluate", compute_fitness) def mate(tc1, tc2): t1, t2 = frozendict.frozendict(tc1), frozendict.frozendict(tc2) o1, o2 = fuzzer.crossover(t1, t2, args) i1, i2 = creator.Individual(o1.items()), creator.Individual(o2.items()) return i1, i2 def mutate(tc): t = frozendict.frozendict(tc) o = fuzzer.mutate(t, args) i1 = creator.Individual(o.items()) return i1, toolbox.register("mate", mate) toolbox.register("mutate", mutate) toolbox.register("select", tools.selTournament, tournsize=TOURNSIZE) coverage = [] for i in range(REPS): instrument.archive_true_branches = {} instrument.archive_false_branches = {} population = toolbox.population(n=NPOP) algorithms.eaSimple(population, toolbox, CXPROB, MUPROB, NGEN) # , verbose=False) cov = len(instrument.archive_true_branches) + len(instrument.archive_false_branches) print(cov, instrument.archive_true_branches, instrument.archive_false_branches) coverage.append(cov) print(coverage) def compute_fitness(individual: list) -> tuple[float]: x = frozendict.frozendict(individual) range_start, range_end = instrument.n_of_branches[to_test] # Reset any distance values from previous executions instrument.distances_true = {} instrument.distances_false = {} # Run the function under test try: out = instrument.invoke(to_test, x) except AssertionError: print(to_test, x, "=", "[FAILS] fitness = 10000") return 10000, fitness = 0.0 # Sum up branch distances for branch in range(range_start, range_end): if branch in instrument.distances_true: if instrument.distances_true[branch] == 0 and branch not in instrument.archive_true_branches: instrument.archive_true_branches[branch] = x if branch not in instrument.archive_true_branches: fitness += normalize(instrument.distances_true[branch]) for branch in range(range_start, range_end): if branch in instrument.distances_false: if instrument.distances_false[branch] == 0 and branch not in instrument.archive_false_branches: instrument.archive_false_branches[branch] = x if branch not in instrument.archive_false_branches: fitness += normalize(instrument.distances_false[branch]) print(to_test, x, "=", out, "fitness =", fitness) return fitness, def main(): instrument.load_benchmark(save_instrumented=False) # instrument all files in benchmark f_name = "railencrypt_instrumented" generate(f_name) with open(os.path.join(OUT_DIR, f_name + ".py"), "w") as f: cases = get_test_cases(f_name, instrument.functions[f_name], 100) f.write(get_test_class(f_name, cases)) if __name__ == '__main__': main()