Knowledge Search & Extraction
Project 02: Python Test Generator

Claudio Maggioni

Section 1 - Instrumentation

The script instrument.py in the main directory of the project performs instrumentation to replace
each condition node in the Python files present benchmark suite with a call to evaluate_condition,
which will preserve program behaviour but as a side effect will compute and store condition
distance for each traversed branch.

Table |1] summarizes the number of Python files, function definition (FunctionDef) nodes,
and comparison nodes (Compare nodes not in an assert or return statement) found by the
instrumentation script.

Type Number
Python Files 10
Function Nodes 12
Comparison Nodes 44

Table 1: Count of files and nodes found.

Section 2: Fuzzer test generator

The script fuzzer.py loads the instrumented benchmark suite and generates tests at random to
maximize branch coverage.

The implementation submitted with this report slightly improves on the specification required
as it is able to deal with an arbitrary number of function parameters, which must be type-hinted
as either str or int. The fuzzing process generates a pool of 1000 test case inputs according
to the function signature, using randomly generated integers € [—1000, 1000], and randomly
generated string of length € [0,10] with ASCII characters with code € [32,127]. Note that test
cases generated in the pool may not satisfy the preconditions (i.e. the assert statements on the
inputs) for the given function.

250 test cases are extracted from the pool following this procedure. With equal probabilities
(each with p =1/3):

e The extracted test case may be kept as-is;

e The extracted test case may be randomly mutated using the mutate function. An argument
will be chosen at random, and if of type str a random position in the string will be replaced
with a random character. If the argument is of type int, a random value € [—10, 10] will
be added to the argument. If the resulting test case is not present in the pool, it will be
added to the pool,;

e The extracted test case may be randomly combined with another randomly extracted test
using the crossover function. The function will choose at random an argument, and if of
type int it will swap the values assigned to the two tests. If the argument is of type str,
the strings from the two test cases will be split in two substrings at random and they will
be joined by combining the “head” substring from one test case with the “tail” substring
from the other. If the two resulting test cases are new, they will be added to the pool.

If the resulting test case (or test cases) satisfy the function precondition, and if their execution
covers branches that have not been covered by other test cases, they will be added to the test
suite. The resulting test suite is then saved as a unittest file, comprising of one test class per
function present in the benchmark test file.

Section 3: Genetic Algorithm test generator

The script genetic.py loads the instrumented benchmark suite and generates tests using a genetic
algorithm to maximize branch coverage and minimize distance to condition boundary values.

The genetic algorithm is implemented via the library deap using the eaSimple procedure. The
algorithm is initialized with 200 individuals extracted from a pool generated in the same way
as the previous section. The algorithm runs for 20 generations, and it implements the mate
and mutate operators using the crossover and mutate functions respectively as described in the
previous section.

The fitness function used returns a value of oo if the test case does not satisfy the function
precondition, a value of 1000000 if the test case does not cover any new branches, or the sum
of normalized (1/(z 4 1)) sum of distances for branches that are not yet covered by other test
cases. A penalty of 2 is summed to the fitness value for every branch that is already covered.
The fitness function is minimized by the genetic algorithm.

The genetic algorithm is ran 10 times. At the end of each execution the best individuals (sorted
by increasing fitness) are selected if they cover at least one branch that has not been covered.
This is the only point in the procedure where the set of covered branches is updatedﬂ

Section 4: Statistical comparison of test generators

To compare the performance of the fuzzer and the genetic algorithm, the mutation testing tool
mut.py has been used to measure how robust the generated test suites hard. Both implementations
have been executed for 10 times using different RNG seeds each time, and a statistical comparison
of the resulting mutation score distributions has been performed to determine when one generation
method is statistically more performant than the other.

Figure [I] shows a boxplot of the mutation score distributions for each file in the benchmark
suite, while figure [2] shows the mean mutation scores.

To perform a statistical comparison, the Wilcoxon paired test has been used with a p-value
threshold of 0.05 has been used to check if there is there is a statistical difference between the
distributions. Moreover, the Cohen’s d effect-size has been used to measure the significance of
the difference. Results of the statistical analysis are shown in table [2]

Only 3 benchmark files out of 10 make the two script have statistical different performance.
They are namely check armstrong, rabin_karp and anagram_check. The first two show that
the genetic algorithm performs significantly better than the fuzzer, while the last file shows the
opposite.

'This differs from the reference implementation of sb_cgi_decode.py, which performs the update directly in the
fitness function.

—-
[=]
(=]

source

90 mE fuzzer
[genetic ¥
80
70 1 — §+
L]
60 e ¢
o +
g 50 L —]
& . +
40 4
30
==
20
[]
10 R
0
o) & & & > < KR &)
s c}&@ &{,‘*e . 596 & ¢ ooea'& N SY v\{@b
s L s
LAY S A I S
& & & & o & @
& 5® o @ (\Qg’ @
& 0
cP@
file

Figure 1: Distributions of mut.py mutation scores over the generated benchmark tests suites using
the fuzzer and the genetic algorithm.

-
o
o

source
90 - mem fuzzer
. genetic
80
70
60
Q
o 50
®
40
30
20
10
, N
& I’ s® & o (S"b & >
& N 5 4 R .
&7 -‘a\’ (ﬁ . C)‘I Q!b(\ CP’ '0\
@ o 4 7 Py @7
2 &F i & & Qﬁb‘} N g
+ 5® & @ « & #
<
cPQ

file

Figure 2: mut.py Mutation score average over the generated benchmark tests suites using the
fuzzer and the genetic algorithm.

File E(Fuzzer) E(Genetic) Cohen’s |d| Wilcoxon p

check armstrong 58.07 93.50 2.0757 Huge 0.0020
railfence cipher 88.41 87.44 0.8844 Very large 0.1011
longest _substring 77.41 76.98 0.0771 Small 0.7589
common_divisor _count 76.17 72.76 0.7471 Large 0.1258
zellers_ birthday 68.09 71.75 1.4701 Huge 0.0039
exponentiation 69.44 67.14 0.3342 Medium 0.7108
caesar _cipher 60.59 61.20 0.3549 Medium 0.2955
ged 59.15 55.66 0.5016 Large 0.1627
rabin_karp 27.90 47.55 2.3688 Huge 0.0078
anagram _ check 23.10 7.70 oo Huge 0.0020

Table 2: Statistical comparison between fuzzer and genetic algorithm test case generation in terms
of mutation score as reported by mut.py over 10 runs, sorted by genetic mutation score.
The table reports run means, the wilcoxon paired test p-value and the Cohen’s d effect
size for each file in the benchmark.

