This repository has been archived on 2024-10-22. You can view files and clone it, but cannot push or open issues or pull requests.
kse-02/muttest.py
2023-12-25 22:24:01 +01:00

130 lines
4.3 KiB
Python

import math
import os
import re
import subprocess
import sys
from math import sqrt
from statistics import mean, variance
from typing import List, Dict
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy.stats import wilcoxon
from tqdm import tqdm
ROOT_DIR = os.path.dirname(__file__)
IN_SOURCE_DIR = os.path.join(ROOT_DIR, "benchmark")
IN_TEST_DIR = os.path.join(ROOT_DIR, "tests")
IN_FUZZER_TEST_DIR = os.path.join(ROOT_DIR, "fuzzer_tests")
OUT_DIR = os.path.join(ROOT_DIR, "out")
MUT_PY_PATH = os.path.join(ROOT_DIR, 'env37', 'bin', 'mut.py')
REPS: int = 10
def cohen_d(d1: List[float], d2: List[float]) -> float:
pooled_sd = sqrt(((len(d1) - 1) * variance(d1) + (len(d2) - 1) * variance(d2)) /
(len(d1) + len(d2) - 2))
if pooled_sd == 0:
return math.inf
return (mean(d1) - mean(d2)) / pooled_sd
def effect_size(eff: float) -> str:
if eff <= 0.01:
return 'Very small'
elif eff <= 0.2:
return 'Small'
elif eff <= 0.5:
return 'Medium'
elif eff <= 0.8:
return 'Large'
elif eff <= 1.2:
return 'Very large'
else:
return 'Huge'
def compute_stats(df_gen: pd.DataFrame, df_fuz: pd.DataFrame, output_file: str, avg_output_file: str, stat_csv: str):
combined_df = pd.concat([df_gen, df_fuz], keys=["genetic", "fuzzer"]).reset_index()
combined_df.columns = ['source', *combined_df.columns[1:]]
del combined_df[combined_df.columns[1]]
plt.figure(figsize=(18, 8))
sns.set(style="whitegrid")
sns.boxplot(data=combined_df, x="file", y="score", hue="source")
plt.yticks(range(0, 101, 10))
plt.savefig(output_file)
plt.figure(figsize=(18, 8))
df_avg = combined_df.groupby(['file', 'source']).mean().reset_index()
sns.set(style="whitegrid")
sns.barplot(data=df_avg, x="file", y="score", hue="source")
plt.yticks(range(0, 101, 10))
plt.savefig(avg_output_file)
df_avg = df_avg.pivot(index='file', columns='source', values='score').rename_axis(None, axis=1)
df_avg['cohen-d'] = [math.nan] * len(df_avg.index)
df_avg['interpretation'] = [math.nan] * len(df_avg.index)
df_avg['wilcoxon'] = [math.nan] * len(df_avg.index)
for f in combined_df['file'].drop_duplicates():
list_gen = df_gen.loc[(df_gen.file == f), 'score'].tolist()
list_fuz = df_fuz.loc[(df_fuz.file == f), 'score'].tolist()
df_avg.loc[f, 'cohen-d'] = cohen_d(list_gen, list_fuz)
df_avg.loc[f, 'interpretation'] = effect_size(df_avg.loc[f, 'cohen-d'])
df_avg.loc[f, 'wilcoxon'] = wilcoxon(list_gen, list_fuz, zero_method='zsplit').pvalue
df_avg.to_csv(stat_csv)
def run_mutpy(test_path: str, source_path: str) -> float:
output = subprocess.check_output(
[sys.executable,
MUT_PY_PATH,
'-t', source_path,
'-u', test_path,
'--hom-strategy', 'RANDOM',
'--percentage', '75']).decode('utf-8')
score = re.search('Mutation score \\[.*]: (\\d+\\.\\d+)%', output).group(1)
return float(score)
def mutate_suite(out_file: str, in_test_dir: str, to_test: List[str]):
scores: List[Dict[str, any]] = []
if os.path.isfile(out_file): # do not re-generate if file exists
return pd.read_csv(out_file, index_col=0)
for filename in tqdm(to_test, desc=f"mut.py [{os.path.basename(out_file)}]"):
source_path = os.path.join(IN_SOURCE_DIR, f"{filename}.py")
test_path = os.path.join(in_test_dir, f"test_{filename}.py")
scores.append({
'file': filename,
'score': run_mutpy(test_path, source_path)
})
df = pd.DataFrame.from_records(scores)
df.to_csv(out_file)
return df
def main():
files = [os.path.splitext(f) for f in os.listdir(IN_SOURCE_DIR)]
to_test = [file[0] for file in files if file[1] == ".py"]
to_test = [e for t in to_test for e in ([t] * REPS)]
df_gen = mutate_suite(os.path.join(OUT_DIR, 'mutation_results_genetic.csv'), IN_TEST_DIR, to_test)
df_fuz = mutate_suite(os.path.join(OUT_DIR, 'mutation_results_fuzzer.csv'), IN_FUZZER_TEST_DIR, to_test)
compute_stats(df_gen, df_fuz,
os.path.join(OUT_DIR, "mutation_scores.png"),
os.path.join(OUT_DIR, "mutation_scores_mean.png"),
os.path.join(OUT_DIR, "stats.csv"))
if __name__ == "__main__":
main()