corrections

This commit is contained in:
Claudio Maggioni 2021-06-09 15:59:06 +02:00
parent 6d8930218f
commit 3cd01bfb07
22 changed files with 568 additions and 0 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,63 @@
from tensorflow.keras.models import load_model
import os
import pickle
import urllib.request as http
from zipfile import ZipFile
from tensorflow.keras import utils
import tensorflow as tf
import numpy as np
from PIL import Image
from tensorflow.keras import layers as keras_layers
from tensorflow.keras import backend as K
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import save_model, load_model
def load_cifar10(num_classes=3):
"""
Downloads CIFAR-10 dataset, which already contains a training and test set,
and return the first `num_classes` classes.
Example of usage:
>>> (x_train, y_train), (x_test, y_test) = load_cifar10()
:param num_classes: int, default is 3 as required by the assignment.
:return: the filtered data.
"""
(x_train_all, y_train_all), (x_test_all, y_test_all) = cifar10.load_data()
fil_train = tf.where(y_train_all[:, 0] < num_classes)[:, 0]
fil_test = tf.where(y_test_all[:, 0] < num_classes)[:, 0]
y_train = y_train_all[fil_train]
y_test = y_test_all[fil_test]
x_train = x_train_all[fil_train]
x_test = x_test_all[fil_test]
return (x_train, y_train), (x_test, y_test)
if __name__ == '__main__':
_, (x_test, y_test) = load_cifar10()
x_test_n = x_test / 255
y_test_n = utils.to_categorical(y_test, 3)
lrs = ["01", "0001"]
nns = [16, 64]
for lr in lrs:
for nn in nns:
# Load the trained models
model_task1 = load_model('nn_task1_bonus/t1_bonus_%s_%d.h5' % (lr, nn))
# Predict on the given samples
y_pred_task1 = model_task1.predict(x_test_n)
# Evaluate the missclassification error on the test set
assert y_test_n.shape == y_pred_task1.shape
test_loss, test_accuracy = model_task1.evaluate(x_test_n, y_test_n) # evaluate accuracy with proper function
print("Accuracy model task 1 (%d neurons, 0.%s learning rate):" % (nn, lr), test_accuracy)

View file

@ -103,6 +103,11 @@ The script will download automatically the models.
Then, in order to run the models with the \texttt{run\_task*.py}, make sure you first \texttt{cd} in the
\texttt{deliverable} directory.
Should the script not work, please download the compressed T1 and T2 models from
\url{https://drive.switch.ch/index.php/s/F0ubFgS6PBy8UM5/download} and uncompress the downloaded \texttt{.tar.gz}
file in the \texttt{deliverable/} directory, and then make sure the directories \texttt{deliverable/nn\_task1} and \texttt{deliverable/nn\_task2}
contain 3 \texttt{.h5} files in total.
\maketitle
In this assignment you are asked to:
@ -180,6 +185,60 @@ The training and validation accuracy curves for the network is shown below:
\caption{Training and validation accuracy curves during fitting for the CIFAR10 classifier}
\end{figure}
\subsection{Bonus}
A plot of the validation loss and accuracy over training epochs for each of the configurations in the grid search are given below.
The plot is useful to understand that for both learning rates chosen, choosing 64 neurons will lead to overfitting, due to the validation
loss being higher than the training loss. This overfitting cannot be easily avoided with the adopted early stopping procedure, since
our implementation monitors validation loss and not validation accuracy.
The second observation that can be found from the plots is that a smaller learning rate increases the number of epochs needed to achieve convergence
but it also increases the model accuracy and decreases the model loss.
By running all the models on the test set, using the script \texttt{run\_task1\_bonus.py} in the \texttt{deliverable/} directory,
we obtain the following loss and accuracy:
\begin{center}
\begin{tabular}{cccc}
\textbf{Learn rate} & \textbf{\# Neurons} & \textbf{Loss} & \textbf{Accuracy} \\\hline
0.01 & 16 & 0.4597 & 0.8117 \\
0.01 & 64 & 0.4508 & 0.8290 \\
0.0001 & 16 & 0.4048 & 0.8437 \\
0.0001 & 64 & 0.4073 & 0.8343 \\
\end{tabular}
\end{center}
We choose the third configuration as the optimal one since it has highest accuracy (and lowest loss too). We then perform a T-test
between this model and the one built in the previous section using the script \texttt{src/t\_test\_bonus.py}.
The T-test gives a T-score of 1.374106, corresponding to a P-value of 0.169511, which makes us accept the null hypothesis therefore
concluding that there is no significant difference between this optimal model and the one trained in the previous section.
\begin{figure}[H]
\centering
\resizebox{0.75\textwidth}{!}{%
\includegraphics[width=0.25\textwidth]{./t1_bonus_0001_16.png}}
\caption{Training and validation accuracy curves during fitting for the CIFAR10 classifier (0.0001 learning rate, 16 neurons)}
\end{figure}
\begin{figure}[H]
\centering
\resizebox{0.75\textwidth}{!}{%
\includegraphics[width=0.25\textwidth]{./t1_bonus_0001_64.png}}
\caption{Training and validation accuracy curves during fitting for the CIFAR10 classifier (0.0001 learning rate, 64 neurons)}
\end{figure}
\begin{figure}[H]
\centering
\resizebox{0.75\textwidth}{!}{%
\includegraphics[width=0.25\textwidth]{./t1_bonus_01_16.png}}
\caption{Training and validation accuracy curves during fitting for the CIFAR10 classifier (0.01 learning rate, 16 neurons)}
\end{figure}
\begin{figure}[H]
\centering
\resizebox{\textwidth}{!}{%
\includegraphics{./t1_bonus_01_64.png}}
\caption{Training and validation accuracy curves during fitting for the CIFAR10 classifier (0.01 learning rate, 64 neurons)}
\end{figure}
%----------------------------------------------------------------------------------------
% Task 2
%----------------------------------------------------------------------------------------

View file

@ -0,0 +1,208 @@
epoch,accuracy,loss,val_accuracy,val_loss
0,0.4284999966621399,1.0838768482208252,0.4869999885559082,1.0578199625015259
1,0.5239166617393494,1.0402600765228271,0.5659999847412109,1.0190595388412476
2,0.5817499756813049,0.9990922212600708,0.5910000205039978,0.9864984750747681
3,0.6119999885559082,0.9622434377670288,0.6259999871253967,0.949017345905304
4,0.6326666474342346,0.9315217137336731,0.6393333077430725,0.9176478385925293
5,0.6454166769981384,0.9024352431297302,0.652999997138977,0.8911747932434082
6,0.6585000157356262,0.8730461597442627,0.6690000295639038,0.8625798225402832
7,0.6735000014305115,0.8446393013000488,0.6773333549499512,0.835181474685669
8,0.6888333559036255,0.8144475221633911,0.6913333535194397,0.8033531308174133
9,0.703166663646698,0.7868669629096985,0.7013333439826965,0.7806670069694519
10,0.706166684627533,0.763378918170929,0.7110000252723694,0.757719099521637
11,0.7145833373069763,0.7431033253669739,0.715666651725769,0.741998553276062
12,0.718916654586792,0.7261846661567688,0.7210000157356262,0.7289196252822876
13,0.7229999899864197,0.7120341658592224,0.7239999771118164,0.7132157683372498
14,0.7258333563804626,0.6993649005889893,0.7233333587646484,0.70282381772995
15,0.7294166684150696,0.6884589791297913,0.7303333282470703,0.689950704574585
16,0.7324166893959045,0.6778770089149475,0.7319999933242798,0.681061863899231
17,0.7354999780654907,0.6690850257873535,0.737333357334137,0.6833087801933289
18,0.7399166822433472,0.6607983708381653,0.7369999885559082,0.6706054210662842
19,0.7423333525657654,0.6530723571777344,0.7403333187103271,0.6624245643615723
20,0.7432500123977661,0.6457955837249756,0.7486666440963745,0.6517229676246643
21,0.746833324432373,0.6393903493881226,0.75,0.643888533115387
22,0.7488333582878113,0.6326268911361694,0.7486666440963745,0.6383176445960999
23,0.7483333349227905,0.6276751160621643,0.7490000128746033,0.6381990313529968
24,0.7508333325386047,0.6220626831054688,0.7536666393280029,0.6306868195533752
25,0.7518333196640015,0.6173197031021118,0.7553333044052124,0.6245272159576416
26,0.7560833096504211,0.6129053831100464,0.7526666522026062,0.6247814893722534
27,0.7541666626930237,0.6082961559295654,0.7536666393280029,0.6236191987991333
28,0.7570000290870667,0.6036962866783142,0.7590000033378601,0.6098343133926392
29,0.7574166655540466,0.601693332195282,0.7580000162124634,0.6087884306907654
30,0.7584166526794434,0.5974898934364319,0.7586666941642761,0.6052170991897583
31,0.7605000138282776,0.5938131213188171,0.7620000243186951,0.6003297567367554
32,0.762416660785675,0.5905328989028931,0.7639999985694885,0.5992019176483154
33,0.7612500190734863,0.5880444645881653,0.7643333077430725,0.5923108458518982
34,0.7616666555404663,0.5853286385536194,0.7639999985694885,0.5930081605911255
35,0.7638333439826965,0.5823095440864563,0.762666642665863,0.5964158773422241
36,0.765999972820282,0.5795621275901794,0.7673333287239075,0.5843967795372009
37,0.7668333053588867,0.5765686631202698,0.7663333415985107,0.5817729234695435
38,0.765916645526886,0.5750483274459839,0.7703333497047424,0.5850620269775391
39,0.765999972820282,0.5720317959785461,0.7699999809265137,0.5821769833564758
40,0.7690833210945129,0.5689754486083984,0.7563333511352539,0.6062623858451843
41,0.7701666951179504,0.5680242776870728,0.7749999761581421,0.5748355388641357
42,0.7706666588783264,0.565283477306366,0.7703333497047424,0.5693557858467102
43,0.7690833210945129,0.5632652044296265,0.762666642665863,0.5945876240730286
44,0.7721666693687439,0.5612371563911438,0.7743333578109741,0.5655432939529419
45,0.7735833525657654,0.5595787763595581,0.7726666927337646,0.5788276195526123
46,0.7735000252723694,0.5573917627334595,0.7706666588783264,0.5659079551696777
47,0.7726666927337646,0.5553656816482544,0.7746666669845581,0.565401554107666
48,0.7738333344459534,0.5532978773117065,0.7770000100135803,0.5598950386047363
49,0.7741666436195374,0.5511548519134521,0.7720000147819519,0.572717547416687
50,0.7744166851043701,0.5503709316253662,0.7816666960716248,0.5534486770629883
51,0.7755833268165588,0.5489298701286316,0.7746666669845581,0.5592584013938904
52,0.778249979019165,0.5472049117088318,0.7793333530426025,0.5620111227035522
53,0.778083324432373,0.5453718304634094,0.7820000052452087,0.5521920919418335
54,0.7774166464805603,0.5436322093009949,0.7753333449363708,0.5749772787094116
55,0.7795833349227905,0.5426769852638245,0.7833333611488342,0.54844069480896
56,0.781499981880188,0.5414560437202454,0.7863333225250244,0.5461897850036621
57,0.7798333168029785,0.5391659736633301,0.7873333096504211,0.5434498190879822
58,0.781000018119812,0.537829577922821,0.7860000133514404,0.5473216772079468
59,0.78125,0.5362415313720703,0.7833333611488342,0.5422953963279724
60,0.7825833559036255,0.5345484018325806,0.7896666526794434,0.5397301912307739
61,0.781083345413208,0.5333306193351746,0.7846666574478149,0.5488216280937195
62,0.781499981880188,0.5316175818443298,0.7866666913032532,0.5375092029571533
63,0.7825833559036255,0.5311059355735779,0.7913333177566528,0.5380165576934814
64,0.7825833559036255,0.5293938517570496,0.7860000133514404,0.5474703907966614
65,0.784583330154419,0.526911199092865,0.7940000295639038,0.534210741519928
66,0.7850833535194397,0.526195228099823,0.7796666622161865,0.5485478639602661
67,0.784500002861023,0.5255493521690369,0.7879999876022339,0.5286822319030762
68,0.7829166650772095,0.5241622924804688,0.7879999876022339,0.5352179408073425
69,0.7868333458900452,0.5224430561065674,0.793666660785675,0.5249139666557312
70,0.7879999876022339,0.5207787752151489,0.7953333258628845,0.5275792479515076
71,0.7878333330154419,0.5201119184494019,0.7900000214576721,0.5244088768959045
72,0.7862499952316284,0.518958568572998,0.7946666479110718,0.523970901966095
73,0.7882500290870667,0.5165284276008606,0.7866666913032532,0.5394734144210815
74,0.7892500162124634,0.5153293609619141,0.7923333048820496,0.527486264705658
75,0.7892500162124634,0.5146932005882263,0.7960000038146973,0.5198792815208435
76,0.7899166941642761,0.5136726498603821,0.7996666431427002,0.5181387662887573
77,0.7906666398048401,0.5122131109237671,0.7916666865348816,0.5219271183013916
78,0.793749988079071,0.510484516620636,0.7976666688919067,0.513494074344635
79,0.7921666502952576,0.5083696842193604,0.7960000038146973,0.5170464515686035
80,0.7898333072662354,0.5088156461715698,0.7976666688919067,0.5127342939376831
81,0.7913333177566528,0.5076265335083008,0.7990000247955322,0.5130664110183716
82,0.7923333048820496,0.5065186619758606,0.7983333468437195,0.5115938186645508
83,0.793833315372467,0.5060837268829346,0.7946666479110718,0.5189694762229919
84,0.7951666712760925,0.5030198097229004,0.8016666769981384,0.5069235563278198
85,0.7958333492279053,0.5018414855003357,0.7986666560173035,0.5069368481636047
86,0.7948333621025085,0.5011022090911865,0.7950000166893005,0.518936276435852
87,0.7963333129882812,0.4992195963859558,0.8023333549499512,0.510757327079773
88,0.7948333621025085,0.49941515922546387,0.8026666641235352,0.5029817819595337
89,0.7955833077430725,0.49796411395072937,0.8016666769981384,0.5108314156532288
90,0.796999990940094,0.49605679512023926,0.8050000071525574,0.5015484094619751
91,0.7985833287239075,0.4947517514228821,0.8066666722297668,0.5003050565719604
92,0.7985000014305115,0.4942174553871155,0.7979999780654907,0.5157888531684875
93,0.7991666793823242,0.49348536133766174,0.8046666383743286,0.5041453242301941
94,0.7982500195503235,0.4924047887325287,0.8069999814033508,0.4955296218395233
95,0.8004166483879089,0.4904239773750305,0.8040000200271606,0.5005924701690674
96,0.800083339214325,0.48912033438682556,0.8066666722297668,0.4985409379005432
97,0.799833357334137,0.4888407289981842,0.7976666688919067,0.5117080211639404
98,0.8034999966621399,0.48750850558280945,0.8076666593551636,0.49502503871917725
99,0.8027499914169312,0.4864256680011749,0.8059999942779541,0.49409762024879456
100,0.8030833601951599,0.4843618869781494,0.8076666593551636,0.49316972494125366
101,0.8027499914169312,0.48391976952552795,0.8056666851043701,0.49657031893730164
102,0.8028333187103271,0.48304617404937744,0.8109999895095825,0.4907311201095581
103,0.8035833239555359,0.48315954208374023,0.8103333115577698,0.4878624975681305
104,0.8054166436195374,0.48030945658683777,0.8080000281333923,0.4901617467403412
105,0.8042500019073486,0.4796009957790375,0.8119999766349792,0.48475587368011475
106,0.8058333396911621,0.47907406091690063,0.8023333549499512,0.5024172067642212
107,0.8073333501815796,0.47742727398872375,0.8163333535194397,0.4822111427783966
108,0.8069999814033508,0.4768243134021759,0.8140000104904175,0.4833918809890747
109,0.8089166879653931,0.47576457262039185,0.7940000295639038,0.5274575352668762
110,0.8097500205039978,0.4746205508708954,0.8143333196640015,0.4814397692680359
111,0.8080833554267883,0.4733660817146301,0.8166666626930237,0.4792422950267792
112,0.8110833168029785,0.47120606899261475,0.8050000071525574,0.49773457646369934
113,0.8081666827201843,0.4709709584712982,0.8146666884422302,0.4788338541984558
114,0.809416651725769,0.4698839485645294,0.8103333115577698,0.48417407274246216
115,0.8108333349227905,0.4692935347557068,0.8103333115577698,0.48160356283187866
116,0.8082500100135803,0.46925967931747437,0.8183333277702332,0.47494229674339294
117,0.8088333606719971,0.4674088656902313,0.8180000185966492,0.4744347631931305
118,0.8110833168029785,0.4659174680709839,0.8199999928474426,0.4724946618080139
119,0.8117499947547913,0.46476221084594727,0.8193333148956299,0.4741252064704895
120,0.8131666779518127,0.4641077518463135,0.8166666626930237,0.47541138529777527
121,0.8112499713897705,0.4629130959510803,0.8143333196640015,0.47737279534339905
122,0.8129166960716248,0.46172896027565,0.8196666836738586,0.4691659212112427
123,0.8130833506584167,0.4603128731250763,0.8163333535194397,0.47983890771865845
124,0.8149999976158142,0.45970287919044495,0.812333345413208,0.4799528419971466
125,0.8136666417121887,0.4591692388057709,0.8199999928474426,0.4662765562534332
126,0.8149166703224182,0.458272784948349,0.8223333358764648,0.46743473410606384
127,0.8163333535194397,0.45662394165992737,0.8106666803359985,0.48275816440582275
128,0.815833330154419,0.45521605014801025,0.8063333630561829,0.4981910288333893
129,0.815666675567627,0.4543023407459259,0.8240000009536743,0.46369388699531555
130,0.8162500262260437,0.4547498822212219,0.8236666917800903,0.4625664949417114
131,0.8163333535194397,0.45360472798347473,0.8216666579246521,0.46581321954727173
132,0.8171666860580444,0.4513089656829834,0.8213333487510681,0.46794694662094116
133,0.8174999952316284,0.4502676725387573,0.8236666917800903,0.46201929450035095
134,0.8175833225250244,0.450626939535141,0.8233333230018616,0.4603627622127533
135,0.8180000185966492,0.44978514313697815,0.8223333358764648,0.46608027815818787
136,0.8181666731834412,0.4481619894504547,0.8253333568572998,0.45728397369384766
137,0.8199166655540466,0.44881880283355713,0.8243333101272583,0.45805856585502625
138,0.8180000185966492,0.44711729884147644,0.8196666836738586,0.4678555130958557
139,0.8193333148956299,0.44647112488746643,0.8253333568572998,0.4564843475818634
140,0.8205833435058594,0.44517993927001953,0.8256666660308838,0.4554981589317322
141,0.8193333148956299,0.4448118805885315,0.8259999752044678,0.4561938941478729
142,0.8237500190734863,0.44255080819129944,0.8253333568572998,0.45700377225875854
143,0.8211666941642761,0.4421866536140442,0.812333345413208,0.47945523262023926
144,0.8218333125114441,0.44304102659225464,0.8273333311080933,0.45237383246421814
145,0.8228333592414856,0.44051310420036316,0.8240000009536743,0.45798397064208984
146,0.8230833411216736,0.4395943284034729,0.8289999961853027,0.45160120725631714
147,0.8238333463668823,0.4399288594722748,0.8230000138282776,0.45358365774154663
148,0.8225833177566528,0.43944698572158813,0.8233333230018616,0.46108153462409973
149,0.8233333230018616,0.4379068613052368,0.8259999752044678,0.4573875665664673
150,0.8230833411216736,0.43709826469421387,0.8256666660308838,0.4587935507297516
151,0.8264999985694885,0.4359411895275116,0.8273333311080933,0.44938838481903076
152,0.8260833621025085,0.43441638350486755,0.8226666450500488,0.46108269691467285
153,0.8252500295639038,0.4348291754722595,0.8273333311080933,0.449728399515152
154,0.8260833621025085,0.43436935544013977,0.8330000042915344,0.44688400626182556
155,0.825166642665863,0.4338207244873047,0.8256666660308838,0.4547237157821655
156,0.828249990940094,0.4312988817691803,0.8140000104904175,0.4719071090221405
157,0.828416645526886,0.4321413040161133,0.8176666498184204,0.471040278673172
158,0.828166663646698,0.4318599998950958,0.8273333311080933,0.45197200775146484
159,0.828166663646698,0.430090993642807,0.82833331823349,0.44439029693603516
160,0.8285833597183228,0.42939189076423645,0.8289999961853027,0.44576922059059143
161,0.82791668176651,0.4281749129295349,0.8326666951179504,0.4409608840942383
162,0.8273333311080933,0.42749324440956116,0.8293333053588867,0.44817423820495605
163,0.8259999752044678,0.4273661673069,0.8336666822433472,0.44242313504219055
164,0.8308333158493042,0.42598238587379456,0.8339999914169312,0.4399816393852234
165,0.8295000195503235,0.4251851737499237,0.8343333601951599,0.43797993659973145
166,0.831416666507721,0.4249284565448761,0.8333333134651184,0.4396743178367615
167,0.8302500247955322,0.4233575165271759,0.8330000042915344,0.44218865036964417
168,0.8289999961853027,0.42399221658706665,0.8259999752044678,0.46105313301086426
169,0.8308333158493042,0.42323893308639526,0.8240000009536743,0.4512389004230499
170,0.8326666951179504,0.42107221484184265,0.8303333520889282,0.4463028907775879
171,0.8318333625793457,0.42121410369873047,0.8299999833106995,0.44618427753448486
172,0.8338333368301392,0.4210498034954071,0.8346666693687439,0.4352149963378906
173,0.8330000042915344,0.4207684397697449,0.8343333601951599,0.4385925829410553
174,0.8338333368301392,0.4197690486907959,0.8303333520889282,0.4400194585323334
175,0.8330833315849304,0.41875529289245605,0.8386666774749756,0.43167558312416077
176,0.831416666507721,0.4174823462963104,0.8363333344459534,0.432464063167572
177,0.8331666588783264,0.4170875549316406,0.8330000042915344,0.4378066956996918
178,0.8335833549499512,0.41703271865844727,0.8339999914169312,0.43457409739494324
179,0.8335833549499512,0.41658085584640503,0.82833331823349,0.446471631526947
180,0.8343333601951599,0.41647860407829285,0.8336666822433472,0.4432835578918457
181,0.8351666927337646,0.41469189524650574,0.8339999914169312,0.4488014876842499
182,0.8349999785423279,0.41478434205055237,0.8346666693687439,0.4341667592525482
183,0.8360000252723694,0.4139315187931061,0.8389999866485596,0.42700210213661194
184,0.8343333601951599,0.41383248567581177,0.8330000042915344,0.44171130657196045
185,0.8361666798591614,0.4140091836452484,0.8383333086967468,0.4264924228191376
186,0.8364999890327454,0.41313403844833374,0.8403333425521851,0.42911815643310547
187,0.8358333110809326,0.4112303555011749,0.8276666402816772,0.43771249055862427
188,0.8367499709129333,0.4110860228538513,0.8346666693687439,0.4293495714664459
189,0.8371666669845581,0.4093056619167328,0.8276666402816772,0.43895062804222107
190,0.8358333110809326,0.40977051854133606,0.8386666774749756,0.42875438928604126
191,0.8359166383743286,0.40980789065361023,0.8410000205039978,0.4244656562805176
192,0.8376666903495789,0.40832388401031494,0.8383333086967468,0.42901018261909485
193,0.8379999995231628,0.4090903699398041,0.8339999914169312,0.4351048469543457
194,0.840499997138977,0.40731289982795715,0.8383333086967468,0.42468371987342834
195,0.8369166851043701,0.40723738074302673,0.8429999947547913,0.4221477508544922
196,0.8379999995231628,0.4069906771183014,0.843999981880188,0.42132091522216797
197,0.8375833630561829,0.4065573215484619,0.8413333296775818,0.4236030578613281
198,0.8385000228881836,0.40566837787628174,0.8433333039283752,0.4220002293586731
199,0.8375833630561829,0.40544015169143677,0.8403333425521851,0.4219377934932709
200,0.8396666646003723,0.4040237367153168,0.8356666564941406,0.4344198703765869
201,0.8389166593551636,0.4050865173339844,0.8403333425521851,0.42142143845558167
202,0.8419166803359985,0.4029446542263031,0.8416666388511658,0.42275139689445496
203,0.8383333086967468,0.4023597836494446,0.8423333168029785,0.4203735291957855
204,0.8392500281333923,0.40254902839660645,0.8420000076293945,0.4188210368156433
205,0.840416669845581,0.40155965089797974,0.8426666855812073,0.41766902804374695
206,0.8402500152587891,0.4019468128681183,0.840666651725769,0.4243781864643097
1 epoch accuracy loss val_accuracy val_loss
2 0 0.4284999966621399 1.0838768482208252 0.4869999885559082 1.0578199625015259
3 1 0.5239166617393494 1.0402600765228271 0.5659999847412109 1.0190595388412476
4 2 0.5817499756813049 0.9990922212600708 0.5910000205039978 0.9864984750747681
5 3 0.6119999885559082 0.9622434377670288 0.6259999871253967 0.949017345905304
6 4 0.6326666474342346 0.9315217137336731 0.6393333077430725 0.9176478385925293
7 5 0.6454166769981384 0.9024352431297302 0.652999997138977 0.8911747932434082
8 6 0.6585000157356262 0.8730461597442627 0.6690000295639038 0.8625798225402832
9 7 0.6735000014305115 0.8446393013000488 0.6773333549499512 0.835181474685669
10 8 0.6888333559036255 0.8144475221633911 0.6913333535194397 0.8033531308174133
11 9 0.703166663646698 0.7868669629096985 0.7013333439826965 0.7806670069694519
12 10 0.706166684627533 0.763378918170929 0.7110000252723694 0.757719099521637
13 11 0.7145833373069763 0.7431033253669739 0.715666651725769 0.741998553276062
14 12 0.718916654586792 0.7261846661567688 0.7210000157356262 0.7289196252822876
15 13 0.7229999899864197 0.7120341658592224 0.7239999771118164 0.7132157683372498
16 14 0.7258333563804626 0.6993649005889893 0.7233333587646484 0.70282381772995
17 15 0.7294166684150696 0.6884589791297913 0.7303333282470703 0.689950704574585
18 16 0.7324166893959045 0.6778770089149475 0.7319999933242798 0.681061863899231
19 17 0.7354999780654907 0.6690850257873535 0.737333357334137 0.6833087801933289
20 18 0.7399166822433472 0.6607983708381653 0.7369999885559082 0.6706054210662842
21 19 0.7423333525657654 0.6530723571777344 0.7403333187103271 0.6624245643615723
22 20 0.7432500123977661 0.6457955837249756 0.7486666440963745 0.6517229676246643
23 21 0.746833324432373 0.6393903493881226 0.75 0.643888533115387
24 22 0.7488333582878113 0.6326268911361694 0.7486666440963745 0.6383176445960999
25 23 0.7483333349227905 0.6276751160621643 0.7490000128746033 0.6381990313529968
26 24 0.7508333325386047 0.6220626831054688 0.7536666393280029 0.6306868195533752
27 25 0.7518333196640015 0.6173197031021118 0.7553333044052124 0.6245272159576416
28 26 0.7560833096504211 0.6129053831100464 0.7526666522026062 0.6247814893722534
29 27 0.7541666626930237 0.6082961559295654 0.7536666393280029 0.6236191987991333
30 28 0.7570000290870667 0.6036962866783142 0.7590000033378601 0.6098343133926392
31 29 0.7574166655540466 0.601693332195282 0.7580000162124634 0.6087884306907654
32 30 0.7584166526794434 0.5974898934364319 0.7586666941642761 0.6052170991897583
33 31 0.7605000138282776 0.5938131213188171 0.7620000243186951 0.6003297567367554
34 32 0.762416660785675 0.5905328989028931 0.7639999985694885 0.5992019176483154
35 33 0.7612500190734863 0.5880444645881653 0.7643333077430725 0.5923108458518982
36 34 0.7616666555404663 0.5853286385536194 0.7639999985694885 0.5930081605911255
37 35 0.7638333439826965 0.5823095440864563 0.762666642665863 0.5964158773422241
38 36 0.765999972820282 0.5795621275901794 0.7673333287239075 0.5843967795372009
39 37 0.7668333053588867 0.5765686631202698 0.7663333415985107 0.5817729234695435
40 38 0.765916645526886 0.5750483274459839 0.7703333497047424 0.5850620269775391
41 39 0.765999972820282 0.5720317959785461 0.7699999809265137 0.5821769833564758
42 40 0.7690833210945129 0.5689754486083984 0.7563333511352539 0.6062623858451843
43 41 0.7701666951179504 0.5680242776870728 0.7749999761581421 0.5748355388641357
44 42 0.7706666588783264 0.565283477306366 0.7703333497047424 0.5693557858467102
45 43 0.7690833210945129 0.5632652044296265 0.762666642665863 0.5945876240730286
46 44 0.7721666693687439 0.5612371563911438 0.7743333578109741 0.5655432939529419
47 45 0.7735833525657654 0.5595787763595581 0.7726666927337646 0.5788276195526123
48 46 0.7735000252723694 0.5573917627334595 0.7706666588783264 0.5659079551696777
49 47 0.7726666927337646 0.5553656816482544 0.7746666669845581 0.565401554107666
50 48 0.7738333344459534 0.5532978773117065 0.7770000100135803 0.5598950386047363
51 49 0.7741666436195374 0.5511548519134521 0.7720000147819519 0.572717547416687
52 50 0.7744166851043701 0.5503709316253662 0.7816666960716248 0.5534486770629883
53 51 0.7755833268165588 0.5489298701286316 0.7746666669845581 0.5592584013938904
54 52 0.778249979019165 0.5472049117088318 0.7793333530426025 0.5620111227035522
55 53 0.778083324432373 0.5453718304634094 0.7820000052452087 0.5521920919418335
56 54 0.7774166464805603 0.5436322093009949 0.7753333449363708 0.5749772787094116
57 55 0.7795833349227905 0.5426769852638245 0.7833333611488342 0.54844069480896
58 56 0.781499981880188 0.5414560437202454 0.7863333225250244 0.5461897850036621
59 57 0.7798333168029785 0.5391659736633301 0.7873333096504211 0.5434498190879822
60 58 0.781000018119812 0.537829577922821 0.7860000133514404 0.5473216772079468
61 59 0.78125 0.5362415313720703 0.7833333611488342 0.5422953963279724
62 60 0.7825833559036255 0.5345484018325806 0.7896666526794434 0.5397301912307739
63 61 0.781083345413208 0.5333306193351746 0.7846666574478149 0.5488216280937195
64 62 0.781499981880188 0.5316175818443298 0.7866666913032532 0.5375092029571533
65 63 0.7825833559036255 0.5311059355735779 0.7913333177566528 0.5380165576934814
66 64 0.7825833559036255 0.5293938517570496 0.7860000133514404 0.5474703907966614
67 65 0.784583330154419 0.526911199092865 0.7940000295639038 0.534210741519928
68 66 0.7850833535194397 0.526195228099823 0.7796666622161865 0.5485478639602661
69 67 0.784500002861023 0.5255493521690369 0.7879999876022339 0.5286822319030762
70 68 0.7829166650772095 0.5241622924804688 0.7879999876022339 0.5352179408073425
71 69 0.7868333458900452 0.5224430561065674 0.793666660785675 0.5249139666557312
72 70 0.7879999876022339 0.5207787752151489 0.7953333258628845 0.5275792479515076
73 71 0.7878333330154419 0.5201119184494019 0.7900000214576721 0.5244088768959045
74 72 0.7862499952316284 0.518958568572998 0.7946666479110718 0.523970901966095
75 73 0.7882500290870667 0.5165284276008606 0.7866666913032532 0.5394734144210815
76 74 0.7892500162124634 0.5153293609619141 0.7923333048820496 0.527486264705658
77 75 0.7892500162124634 0.5146932005882263 0.7960000038146973 0.5198792815208435
78 76 0.7899166941642761 0.5136726498603821 0.7996666431427002 0.5181387662887573
79 77 0.7906666398048401 0.5122131109237671 0.7916666865348816 0.5219271183013916
80 78 0.793749988079071 0.510484516620636 0.7976666688919067 0.513494074344635
81 79 0.7921666502952576 0.5083696842193604 0.7960000038146973 0.5170464515686035
82 80 0.7898333072662354 0.5088156461715698 0.7976666688919067 0.5127342939376831
83 81 0.7913333177566528 0.5076265335083008 0.7990000247955322 0.5130664110183716
84 82 0.7923333048820496 0.5065186619758606 0.7983333468437195 0.5115938186645508
85 83 0.793833315372467 0.5060837268829346 0.7946666479110718 0.5189694762229919
86 84 0.7951666712760925 0.5030198097229004 0.8016666769981384 0.5069235563278198
87 85 0.7958333492279053 0.5018414855003357 0.7986666560173035 0.5069368481636047
88 86 0.7948333621025085 0.5011022090911865 0.7950000166893005 0.518936276435852
89 87 0.7963333129882812 0.4992195963859558 0.8023333549499512 0.510757327079773
90 88 0.7948333621025085 0.49941515922546387 0.8026666641235352 0.5029817819595337
91 89 0.7955833077430725 0.49796411395072937 0.8016666769981384 0.5108314156532288
92 90 0.796999990940094 0.49605679512023926 0.8050000071525574 0.5015484094619751
93 91 0.7985833287239075 0.4947517514228821 0.8066666722297668 0.5003050565719604
94 92 0.7985000014305115 0.4942174553871155 0.7979999780654907 0.5157888531684875
95 93 0.7991666793823242 0.49348536133766174 0.8046666383743286 0.5041453242301941
96 94 0.7982500195503235 0.4924047887325287 0.8069999814033508 0.4955296218395233
97 95 0.8004166483879089 0.4904239773750305 0.8040000200271606 0.5005924701690674
98 96 0.800083339214325 0.48912033438682556 0.8066666722297668 0.4985409379005432
99 97 0.799833357334137 0.4888407289981842 0.7976666688919067 0.5117080211639404
100 98 0.8034999966621399 0.48750850558280945 0.8076666593551636 0.49502503871917725
101 99 0.8027499914169312 0.4864256680011749 0.8059999942779541 0.49409762024879456
102 100 0.8030833601951599 0.4843618869781494 0.8076666593551636 0.49316972494125366
103 101 0.8027499914169312 0.48391976952552795 0.8056666851043701 0.49657031893730164
104 102 0.8028333187103271 0.48304617404937744 0.8109999895095825 0.4907311201095581
105 103 0.8035833239555359 0.48315954208374023 0.8103333115577698 0.4878624975681305
106 104 0.8054166436195374 0.48030945658683777 0.8080000281333923 0.4901617467403412
107 105 0.8042500019073486 0.4796009957790375 0.8119999766349792 0.48475587368011475
108 106 0.8058333396911621 0.47907406091690063 0.8023333549499512 0.5024172067642212
109 107 0.8073333501815796 0.47742727398872375 0.8163333535194397 0.4822111427783966
110 108 0.8069999814033508 0.4768243134021759 0.8140000104904175 0.4833918809890747
111 109 0.8089166879653931 0.47576457262039185 0.7940000295639038 0.5274575352668762
112 110 0.8097500205039978 0.4746205508708954 0.8143333196640015 0.4814397692680359
113 111 0.8080833554267883 0.4733660817146301 0.8166666626930237 0.4792422950267792
114 112 0.8110833168029785 0.47120606899261475 0.8050000071525574 0.49773457646369934
115 113 0.8081666827201843 0.4709709584712982 0.8146666884422302 0.4788338541984558
116 114 0.809416651725769 0.4698839485645294 0.8103333115577698 0.48417407274246216
117 115 0.8108333349227905 0.4692935347557068 0.8103333115577698 0.48160356283187866
118 116 0.8082500100135803 0.46925967931747437 0.8183333277702332 0.47494229674339294
119 117 0.8088333606719971 0.4674088656902313 0.8180000185966492 0.4744347631931305
120 118 0.8110833168029785 0.4659174680709839 0.8199999928474426 0.4724946618080139
121 119 0.8117499947547913 0.46476221084594727 0.8193333148956299 0.4741252064704895
122 120 0.8131666779518127 0.4641077518463135 0.8166666626930237 0.47541138529777527
123 121 0.8112499713897705 0.4629130959510803 0.8143333196640015 0.47737279534339905
124 122 0.8129166960716248 0.46172896027565 0.8196666836738586 0.4691659212112427
125 123 0.8130833506584167 0.4603128731250763 0.8163333535194397 0.47983890771865845
126 124 0.8149999976158142 0.45970287919044495 0.812333345413208 0.4799528419971466
127 125 0.8136666417121887 0.4591692388057709 0.8199999928474426 0.4662765562534332
128 126 0.8149166703224182 0.458272784948349 0.8223333358764648 0.46743473410606384
129 127 0.8163333535194397 0.45662394165992737 0.8106666803359985 0.48275816440582275
130 128 0.815833330154419 0.45521605014801025 0.8063333630561829 0.4981910288333893
131 129 0.815666675567627 0.4543023407459259 0.8240000009536743 0.46369388699531555
132 130 0.8162500262260437 0.4547498822212219 0.8236666917800903 0.4625664949417114
133 131 0.8163333535194397 0.45360472798347473 0.8216666579246521 0.46581321954727173
134 132 0.8171666860580444 0.4513089656829834 0.8213333487510681 0.46794694662094116
135 133 0.8174999952316284 0.4502676725387573 0.8236666917800903 0.46201929450035095
136 134 0.8175833225250244 0.450626939535141 0.8233333230018616 0.4603627622127533
137 135 0.8180000185966492 0.44978514313697815 0.8223333358764648 0.46608027815818787
138 136 0.8181666731834412 0.4481619894504547 0.8253333568572998 0.45728397369384766
139 137 0.8199166655540466 0.44881880283355713 0.8243333101272583 0.45805856585502625
140 138 0.8180000185966492 0.44711729884147644 0.8196666836738586 0.4678555130958557
141 139 0.8193333148956299 0.44647112488746643 0.8253333568572998 0.4564843475818634
142 140 0.8205833435058594 0.44517993927001953 0.8256666660308838 0.4554981589317322
143 141 0.8193333148956299 0.4448118805885315 0.8259999752044678 0.4561938941478729
144 142 0.8237500190734863 0.44255080819129944 0.8253333568572998 0.45700377225875854
145 143 0.8211666941642761 0.4421866536140442 0.812333345413208 0.47945523262023926
146 144 0.8218333125114441 0.44304102659225464 0.8273333311080933 0.45237383246421814
147 145 0.8228333592414856 0.44051310420036316 0.8240000009536743 0.45798397064208984
148 146 0.8230833411216736 0.4395943284034729 0.8289999961853027 0.45160120725631714
149 147 0.8238333463668823 0.4399288594722748 0.8230000138282776 0.45358365774154663
150 148 0.8225833177566528 0.43944698572158813 0.8233333230018616 0.46108153462409973
151 149 0.8233333230018616 0.4379068613052368 0.8259999752044678 0.4573875665664673
152 150 0.8230833411216736 0.43709826469421387 0.8256666660308838 0.4587935507297516
153 151 0.8264999985694885 0.4359411895275116 0.8273333311080933 0.44938838481903076
154 152 0.8260833621025085 0.43441638350486755 0.8226666450500488 0.46108269691467285
155 153 0.8252500295639038 0.4348291754722595 0.8273333311080933 0.449728399515152
156 154 0.8260833621025085 0.43436935544013977 0.8330000042915344 0.44688400626182556
157 155 0.825166642665863 0.4338207244873047 0.8256666660308838 0.4547237157821655
158 156 0.828249990940094 0.4312988817691803 0.8140000104904175 0.4719071090221405
159 157 0.828416645526886 0.4321413040161133 0.8176666498184204 0.471040278673172
160 158 0.828166663646698 0.4318599998950958 0.8273333311080933 0.45197200775146484
161 159 0.828166663646698 0.430090993642807 0.82833331823349 0.44439029693603516
162 160 0.8285833597183228 0.42939189076423645 0.8289999961853027 0.44576922059059143
163 161 0.82791668176651 0.4281749129295349 0.8326666951179504 0.4409608840942383
164 162 0.8273333311080933 0.42749324440956116 0.8293333053588867 0.44817423820495605
165 163 0.8259999752044678 0.4273661673069 0.8336666822433472 0.44242313504219055
166 164 0.8308333158493042 0.42598238587379456 0.8339999914169312 0.4399816393852234
167 165 0.8295000195503235 0.4251851737499237 0.8343333601951599 0.43797993659973145
168 166 0.831416666507721 0.4249284565448761 0.8333333134651184 0.4396743178367615
169 167 0.8302500247955322 0.4233575165271759 0.8330000042915344 0.44218865036964417
170 168 0.8289999961853027 0.42399221658706665 0.8259999752044678 0.46105313301086426
171 169 0.8308333158493042 0.42323893308639526 0.8240000009536743 0.4512389004230499
172 170 0.8326666951179504 0.42107221484184265 0.8303333520889282 0.4463028907775879
173 171 0.8318333625793457 0.42121410369873047 0.8299999833106995 0.44618427753448486
174 172 0.8338333368301392 0.4210498034954071 0.8346666693687439 0.4352149963378906
175 173 0.8330000042915344 0.4207684397697449 0.8343333601951599 0.4385925829410553
176 174 0.8338333368301392 0.4197690486907959 0.8303333520889282 0.4400194585323334
177 175 0.8330833315849304 0.41875529289245605 0.8386666774749756 0.43167558312416077
178 176 0.831416666507721 0.4174823462963104 0.8363333344459534 0.432464063167572
179 177 0.8331666588783264 0.4170875549316406 0.8330000042915344 0.4378066956996918
180 178 0.8335833549499512 0.41703271865844727 0.8339999914169312 0.43457409739494324
181 179 0.8335833549499512 0.41658085584640503 0.82833331823349 0.446471631526947
182 180 0.8343333601951599 0.41647860407829285 0.8336666822433472 0.4432835578918457
183 181 0.8351666927337646 0.41469189524650574 0.8339999914169312 0.4488014876842499
184 182 0.8349999785423279 0.41478434205055237 0.8346666693687439 0.4341667592525482
185 183 0.8360000252723694 0.4139315187931061 0.8389999866485596 0.42700210213661194
186 184 0.8343333601951599 0.41383248567581177 0.8330000042915344 0.44171130657196045
187 185 0.8361666798591614 0.4140091836452484 0.8383333086967468 0.4264924228191376
188 186 0.8364999890327454 0.41313403844833374 0.8403333425521851 0.42911815643310547
189 187 0.8358333110809326 0.4112303555011749 0.8276666402816772 0.43771249055862427
190 188 0.8367499709129333 0.4110860228538513 0.8346666693687439 0.4293495714664459
191 189 0.8371666669845581 0.4093056619167328 0.8276666402816772 0.43895062804222107
192 190 0.8358333110809326 0.40977051854133606 0.8386666774749756 0.42875438928604126
193 191 0.8359166383743286 0.40980789065361023 0.8410000205039978 0.4244656562805176
194 192 0.8376666903495789 0.40832388401031494 0.8383333086967468 0.42901018261909485
195 193 0.8379999995231628 0.4090903699398041 0.8339999914169312 0.4351048469543457
196 194 0.840499997138977 0.40731289982795715 0.8383333086967468 0.42468371987342834
197 195 0.8369166851043701 0.40723738074302673 0.8429999947547913 0.4221477508544922
198 196 0.8379999995231628 0.4069906771183014 0.843999981880188 0.42132091522216797
199 197 0.8375833630561829 0.4065573215484619 0.8413333296775818 0.4236030578613281
200 198 0.8385000228881836 0.40566837787628174 0.8433333039283752 0.4220002293586731
201 199 0.8375833630561829 0.40544015169143677 0.8403333425521851 0.4219377934932709
202 200 0.8396666646003723 0.4040237367153168 0.8356666564941406 0.4344198703765869
203 201 0.8389166593551636 0.4050865173339844 0.8403333425521851 0.42142143845558167
204 202 0.8419166803359985 0.4029446542263031 0.8416666388511658 0.42275139689445496
205 203 0.8383333086967468 0.4023597836494446 0.8423333168029785 0.4203735291957855
206 204 0.8392500281333923 0.40254902839660645 0.8420000076293945 0.4188210368156433
207 205 0.840416669845581 0.40155965089797974 0.8426666855812073 0.41766902804374695
208 206 0.8402500152587891 0.4019468128681183 0.840666651725769 0.4243781864643097

View file

@ -0,0 +1,22 @@
epoch,accuracy,loss,val_accuracy,val_loss
0,0.41100001335144043,1.0990421772003174,0.5046666860580444,0.986140787601471
1,0.5824166536331177,0.9083436131477356,0.49966666102409363,1.1090927124023438
2,0.6570833325386047,0.7929704785346985,0.6413333415985107,0.8897007703781128
3,0.6971666812896729,0.7256202101707458,0.7279999852180481,0.6892613172531128
4,0.7409999966621399,0.6392995715141296,0.7876666784286499,0.5518867373466492
5,0.7586666941642761,0.595727801322937,0.7879999876022339,0.5398681163787842
6,0.765999972820282,0.5687591433525085,0.7883333563804626,0.5295681953430176
7,0.7902500033378601,0.5268591642379761,0.7873333096504211,0.5313050746917725
8,0.7881666421890259,0.5140411853790283,0.8033333420753479,0.5078040361404419
9,0.8003333210945129,0.4939863681793213,0.7733333110809326,0.5571079850196838
10,0.8050000071525574,0.48484984040260315,0.8253333568572998,0.4746514558792114
11,0.8144999742507935,0.46468856930732727,0.7986666560173035,0.5026190876960754
12,0.8208333253860474,0.4587477743625641,0.8146666884422302,0.47092440724372864
13,0.8224166631698608,0.4552185833454132,0.8080000281333923,0.48748379945755005
14,0.8230000138282776,0.4415058493614197,0.8006666898727417,0.5011689066886902
15,0.8287500143051147,0.4330746531486511,0.8096666932106018,0.48085156083106995
16,0.828166663646698,0.43311864137649536,0.8116666674613953,0.4814765155315399
17,0.8344166874885559,0.4186524748802185,0.8213333487510681,0.4748263657093048
18,0.8352500200271606,0.41888558864593506,0.7846666574478149,0.5632604360580444
19,0.843666672706604,0.39935922622680664,0.8243333101272583,0.4644140601158142
20,0.8442500233650208,0.4010440409183502,0.8100000023841858,0.4936281442642212
1 epoch accuracy loss val_accuracy val_loss
2 0 0.41100001335144043 1.0990421772003174 0.5046666860580444 0.986140787601471
3 1 0.5824166536331177 0.9083436131477356 0.49966666102409363 1.1090927124023438
4 2 0.6570833325386047 0.7929704785346985 0.6413333415985107 0.8897007703781128
5 3 0.6971666812896729 0.7256202101707458 0.7279999852180481 0.6892613172531128
6 4 0.7409999966621399 0.6392995715141296 0.7876666784286499 0.5518867373466492
7 5 0.7586666941642761 0.595727801322937 0.7879999876022339 0.5398681163787842
8 6 0.765999972820282 0.5687591433525085 0.7883333563804626 0.5295681953430176
9 7 0.7902500033378601 0.5268591642379761 0.7873333096504211 0.5313050746917725
10 8 0.7881666421890259 0.5140411853790283 0.8033333420753479 0.5078040361404419
11 9 0.8003333210945129 0.4939863681793213 0.7733333110809326 0.5571079850196838
12 10 0.8050000071525574 0.48484984040260315 0.8253333568572998 0.4746514558792114
13 11 0.8144999742507935 0.46468856930732727 0.7986666560173035 0.5026190876960754
14 12 0.8208333253860474 0.4587477743625641 0.8146666884422302 0.47092440724372864
15 13 0.8224166631698608 0.4552185833454132 0.8080000281333923 0.48748379945755005
16 14 0.8230000138282776 0.4415058493614197 0.8006666898727417 0.5011689066886902
17 15 0.8287500143051147 0.4330746531486511 0.8096666932106018 0.48085156083106995
18 16 0.828166663646698 0.43311864137649536 0.8116666674613953 0.4814765155315399
19 17 0.8344166874885559 0.4186524748802185 0.8213333487510681 0.4748263657093048
20 18 0.8352500200271606 0.41888558864593506 0.7846666574478149 0.5632604360580444
21 19 0.843666672706604 0.39935922622680664 0.8243333101272583 0.4644140601158142
22 20 0.8442500233650208 0.4010440409183502 0.8100000023841858 0.4936281442642212

View file

@ -0,0 +1,34 @@
epoch,accuracy,loss,val_accuracy,val_loss
0,0.3686666786670685,1.2228714227676392,0.49000000953674316,1.0355132818222046
1,0.5740000009536743,0.9258081316947937,0.6809999942779541,0.7483968138694763
2,0.6480000019073486,0.8203122019767761,0.5013333559036255,1.076539158821106
3,0.7013333439826965,0.703206479549408,0.7776666879653931,0.5626736879348755
4,0.7287499904632568,0.6631432175636292,0.7706666588783264,0.559110701084137
5,0.7475833296775818,0.6060731410980225,0.6549999713897705,0.8372300863265991
6,0.7550833225250244,0.5816248655319214,0.7929999828338623,0.5178568363189697
7,0.7753333449363708,0.5454885959625244,0.7696666717529297,0.5542431473731995
8,0.7870000004768372,0.5182647109031677,0.796999990940094,0.4952922761440277
9,0.7987499833106995,0.5003635287284851,0.8059999942779541,0.494720458984375
10,0.8073333501815796,0.48458853363990784,0.8113333582878113,0.47935450077056885
11,0.8107500076293945,0.4713839888572693,0.7889999747276306,0.5396782755851746
12,0.8218333125114441,0.4507473409175873,0.8146666884422302,0.4668084383010864
13,0.8296666741371155,0.4340798258781433,0.8193333148956299,0.4502803683280945
14,0.8324166536331177,0.42343637347221375,0.8193333148956299,0.48487967252731323
15,0.8372499942779541,0.4068948030471802,0.7996666431427002,0.49272286891937256
16,0.8428333401679993,0.4035722315311432,0.8119999766349792,0.47965121269226074
17,0.8485000133514404,0.39331746101379395,0.8163333535194397,0.4844145178794861
18,0.8524166941642761,0.3779684603214264,0.8173333406448364,0.4811861515045166
19,0.8514166474342346,0.38542646169662476,0.815666675567627,0.4602762758731842
20,0.8569166660308838,0.3612472414970398,0.7670000195503235,0.5996257066726685
21,0.8636666536331177,0.35209357738494873,0.8176666498184204,0.478706955909729
22,0.8675833344459534,0.3399489223957062,0.8263333439826965,0.46295085549354553
23,0.8653333187103271,0.3398178219795227,0.812333345413208,0.48238879442214966
24,0.8755000233650208,0.32959985733032227,0.7943333387374878,0.5647448897361755
25,0.878166675567627,0.3222483992576599,0.8169999718666077,0.49329763650894165
26,0.8794999718666077,0.31432077288627625,0.8263333439826965,0.4871461093425751
27,0.8855000138282776,0.3000155985355377,0.8109999895095825,0.49287939071655273
28,0.8869166374206543,0.28836581110954285,0.8046666383743286,0.5498819351196289
29,0.8915833234786987,0.2824133038520813,0.8206666707992554,0.49784693121910095
30,0.8934999704360962,0.2731992304325104,0.815666675567627,0.5200576782226562
31,0.9000833630561829,0.2694721519947052,0.8146666884422302,0.5229155421257019
32,0.9021666646003723,0.255941778421402,0.7973333597183228,0.6015266180038452
1 epoch accuracy loss val_accuracy val_loss
2 0 0.3686666786670685 1.2228714227676392 0.49000000953674316 1.0355132818222046
3 1 0.5740000009536743 0.9258081316947937 0.6809999942779541 0.7483968138694763
4 2 0.6480000019073486 0.8203122019767761 0.5013333559036255 1.076539158821106
5 3 0.7013333439826965 0.703206479549408 0.7776666879653931 0.5626736879348755
6 4 0.7287499904632568 0.6631432175636292 0.7706666588783264 0.559110701084137
7 5 0.7475833296775818 0.6060731410980225 0.6549999713897705 0.8372300863265991
8 6 0.7550833225250244 0.5816248655319214 0.7929999828338623 0.5178568363189697
9 7 0.7753333449363708 0.5454885959625244 0.7696666717529297 0.5542431473731995
10 8 0.7870000004768372 0.5182647109031677 0.796999990940094 0.4952922761440277
11 9 0.7987499833106995 0.5003635287284851 0.8059999942779541 0.494720458984375
12 10 0.8073333501815796 0.48458853363990784 0.8113333582878113 0.47935450077056885
13 11 0.8107500076293945 0.4713839888572693 0.7889999747276306 0.5396782755851746
14 12 0.8218333125114441 0.4507473409175873 0.8146666884422302 0.4668084383010864
15 13 0.8296666741371155 0.4340798258781433 0.8193333148956299 0.4502803683280945
16 14 0.8324166536331177 0.42343637347221375 0.8193333148956299 0.48487967252731323
17 15 0.8372499942779541 0.4068948030471802 0.7996666431427002 0.49272286891937256
18 16 0.8428333401679993 0.4035722315311432 0.8119999766349792 0.47965121269226074
19 17 0.8485000133514404 0.39331746101379395 0.8163333535194397 0.4844145178794861
20 18 0.8524166941642761 0.3779684603214264 0.8173333406448364 0.4811861515045166
21 19 0.8514166474342346 0.38542646169662476 0.815666675567627 0.4602762758731842
22 20 0.8569166660308838 0.3612472414970398 0.7670000195503235 0.5996257066726685
23 21 0.8636666536331177 0.35209357738494873 0.8176666498184204 0.478706955909729
24 22 0.8675833344459534 0.3399489223957062 0.8263333439826965 0.46295085549354553
25 23 0.8653333187103271 0.3398178219795227 0.812333345413208 0.48238879442214966
26 24 0.8755000233650208 0.32959985733032227 0.7943333387374878 0.5647448897361755
27 25 0.878166675567627 0.3222483992576599 0.8169999718666077 0.49329763650894165
28 26 0.8794999718666077 0.31432077288627625 0.8263333439826965 0.4871461093425751
29 27 0.8855000138282776 0.3000155985355377 0.8109999895095825 0.49287939071655273
30 28 0.8869166374206543 0.28836581110954285 0.8046666383743286 0.5498819351196289
31 29 0.8915833234786987 0.2824133038520813 0.8206666707992554 0.49784693121910095
32 30 0.8934999704360962 0.2731992304325104 0.815666675567627 0.5200576782226562
33 31 0.9000833630561829 0.2694721519947052 0.8146666884422302 0.5229155421257019
34 32 0.9021666646003723 0.255941778421402 0.7973333597183228 0.6015266180038452

View file

@ -0,0 +1,148 @@
epoch,accuracy,loss,val_accuracy,val_loss
0,0.42133334279060364,1.092440128326416,0.5216666460037231,1.0831907987594604
1,0.48258334398269653,1.0691678524017334,0.578000009059906,1.0515673160552979
2,0.5686666369438171,1.0266000032424927,0.6179999709129333,0.9952982664108276
3,0.6392499804496765,0.962194561958313,0.6690000295639038,0.9293439388275146
4,0.6725000143051147,0.8931296467781067,0.6743333339691162,0.8646112680435181
5,0.6887500286102295,0.8338881731033325,0.6893333196640015,0.8154566884040833
6,0.6955000162124634,0.7897202372550964,0.6940000057220459,0.7788802981376648
7,0.7021666765213013,0.7585954070091248,0.7016666531562805,0.7553337216377258
8,0.7095000147819519,0.7358428835868835,0.7093333601951599,0.7391981482505798
9,0.7130833268165588,0.7185309529304504,0.7113333344459534,0.7247134447097778
10,0.7210000157356262,0.7036754488945007,0.7170000076293945,0.7144900560379028
11,0.7225000262260437,0.6903489828109741,0.7210000157356262,0.7021248936653137
12,0.7294999957084656,0.6791210174560547,0.7263333201408386,0.6896677017211914
13,0.7315833568572998,0.6669951677322388,0.731333315372467,0.6810266971588135
14,0.7365000247955322,0.6564996838569641,0.7366666793823242,0.6689144372940063
15,0.7398333549499512,0.6476236581802368,0.7396666407585144,0.6566316485404968
16,0.7418333292007446,0.639543890953064,0.7443333268165588,0.6492511034011841
17,0.7449166774749756,0.6309488415718079,0.7440000176429749,0.6400158405303955
18,0.7507500052452087,0.622377872467041,0.7490000128746033,0.6308714151382446
19,0.7514166831970215,0.6148524284362793,0.750333309173584,0.6255932450294495
20,0.7551666498184204,0.6085936427116394,0.7566666603088379,0.6217103600502014
21,0.7580000162124634,0.6017386317253113,0.7593333125114441,0.609600841999054
22,0.7609999775886536,0.5949487090110779,0.7543333172798157,0.6064338088035583
23,0.7635833621025085,0.5881058573722839,0.7549999952316284,0.6035630106925964
24,0.7632499933242798,0.5832110047340393,0.7663333415985107,0.5898523926734924
25,0.7692499756813049,0.5766729116439819,0.765666663646698,0.5871346592903137
26,0.7705000042915344,0.5713057518005371,0.7730000019073486,0.5790905952453613
27,0.7727500200271606,0.5663045048713684,0.7736666798591614,0.5738856792449951
28,0.7745833396911621,0.5610684156417847,0.7773333191871643,0.5671684145927429
29,0.7770833373069763,0.5563601851463318,0.7760000228881836,0.5635906457901001
30,0.7768333554267883,0.5514505505561829,0.7836666703224182,0.5566589832305908
31,0.778166651725769,0.5458187460899353,0.7583333253860474,0.5909481048583984
32,0.7806666493415833,0.5436875224113464,0.7850000262260437,0.5474307537078857
33,0.7822499871253967,0.5379191637039185,0.784333348274231,0.5488753914833069
34,0.7837499976158142,0.5342518091201782,0.7753333449363708,0.5533681511878967
35,0.7864166498184204,0.5308119058609009,0.7820000052452087,0.5461623668670654
36,0.7887499928474426,0.5277165770530701,0.781333327293396,0.5409450531005859
37,0.7874166369438171,0.5240803360939026,0.7893333435058594,0.5401000380516052
38,0.7885833382606506,0.5225352644920349,0.7910000085830688,0.5266817808151245
39,0.7888333201408386,0.5176399946212769,0.7926666736602783,0.5274956822395325
40,0.7893333435058594,0.5159404277801514,0.793666660785675,0.5229296684265137
41,0.7930833101272583,0.5116210579872131,0.7756666541099548,0.5420834422111511
42,0.7921666502952576,0.5109115242958069,0.7956666946411133,0.5163940191268921
43,0.7943333387374878,0.5071904063224792,0.7950000166893005,0.5143405795097351
44,0.7944166660308838,0.5054174661636353,0.777999997138977,0.528532087802887
45,0.796999990940094,0.5010374188423157,0.7983333468437195,0.5131596326828003
46,0.796750009059906,0.5006341934204102,0.7973333597183228,0.509623646736145
47,0.7987499833106995,0.4990909695625305,0.7993333339691162,0.5073418617248535
48,0.7978333234786987,0.497801274061203,0.7986666560173035,0.5058290958404541
49,0.796999990940094,0.49675676226615906,0.7986666560173035,0.5052936673164368
50,0.7978333234786987,0.49446648359298706,0.7906666398048401,0.5101428627967834
51,0.7987499833106995,0.49141305685043335,0.7910000085830688,0.5080826878547668
52,0.8018333315849304,0.49017277359962463,0.8009999990463257,0.5003789067268372
53,0.7990833520889282,0.4900963008403778,0.8003333210945129,0.5013912916183472
54,0.8021666407585144,0.48861438035964966,0.7983333468437195,0.500831127166748
55,0.8028333187103271,0.4864603281021118,0.7979999780654907,0.5079330205917358
56,0.8043333292007446,0.48527541756629944,0.8059999942779541,0.49590444564819336
57,0.8024166822433472,0.4850764274597168,0.800000011920929,0.4999690353870392
58,0.8036666512489319,0.4833196997642517,0.8016666769981384,0.4955070912837982
59,0.8026666641235352,0.4804866909980774,0.7950000166893005,0.5002061128616333
60,0.8040000200271606,0.48245230317115784,0.7979999780654907,0.4973487854003906
61,0.8060833215713501,0.47835856676101685,0.7910000085830688,0.5042082071304321
62,0.8060833215713501,0.4784422516822815,0.8046666383743286,0.4913029670715332
63,0.8070833086967468,0.47728076577186584,0.8006666898727417,0.49307548999786377
64,0.8063333630561829,0.47460415959358215,0.8066666722297668,0.4880809187889099
65,0.8078333139419556,0.4747520387172699,0.8066666722297668,0.48889628052711487
66,0.8077499866485596,0.472565233707428,0.8056666851043701,0.49305960536003113
67,0.8102499842643738,0.47163158655166626,0.796999990940094,0.49961018562316895
68,0.8096666932106018,0.4724145233631134,0.7990000247955322,0.4905402958393097
69,0.8109999895095825,0.4715333580970764,0.8080000281333923,0.48410794138908386
70,0.8112499713897705,0.4680226147174835,0.7996666431427002,0.4916672706604004
71,0.8115000128746033,0.4687725007534027,0.7926666736602783,0.49787065386772156
72,0.809333324432373,0.46770256757736206,0.7903333306312561,0.5011722445487976
73,0.812583327293396,0.46606460213661194,0.7983333468437195,0.503963053226471
74,0.8112499713897705,0.46567845344543457,0.800000011920929,0.4879962205886841
75,0.8104166388511658,0.4644148051738739,0.8100000023841858,0.48002851009368896
76,0.812583327293396,0.46399056911468506,0.7940000295639038,0.4991711378097534
77,0.8144999742507935,0.4620969295501709,0.7933333516120911,0.5001674294471741
78,0.8134999871253967,0.4626724123954773,0.7929999828338623,0.4932369887828827
79,0.8146666884422302,0.460686594247818,0.8086666464805603,0.4793894588947296
80,0.812416672706604,0.4595262408256531,0.8076666593551636,0.47897687554359436
81,0.8136666417121887,0.4590204954147339,0.8090000152587891,0.4824315309524536
82,0.8130833506584167,0.45829853415489197,0.8023333549499512,0.4803754389286041
83,0.8135833144187927,0.4585408866405487,0.7993333339691162,0.48915770649909973
84,0.8139166831970215,0.45737844705581665,0.8063333630561829,0.478768527507782
85,0.8145833611488342,0.4551144540309906,0.8119999766349792,0.47424080967903137
86,0.8160833120346069,0.4543878138065338,0.8043333292007446,0.4808327257633209
87,0.815500020980835,0.4546371400356293,0.7929999828338623,0.49613329768180847
88,0.8178333044052124,0.452690064907074,0.793666660785675,0.4978523850440979
89,0.8176666498184204,0.45260632038116455,0.8083333373069763,0.473687082529068
90,0.8181666731834412,0.45101451873779297,0.8113333582878113,0.4717951714992523
91,0.8173333406448364,0.44956472516059875,0.7873333096504211,0.5036012530326843
92,0.8181666731834412,0.4505072832107544,0.809333324432373,0.4718765318393707
93,0.8172500133514404,0.44963616132736206,0.8133333325386047,0.4736625850200653
94,0.8174999952316284,0.44907307624816895,0.8086666464805603,0.4760723412036896
95,0.8183333277702332,0.44802454113960266,0.8143333196640015,0.4659152925014496
96,0.8210833072662354,0.44540080428123474,0.8140000104904175,0.4660656750202179
97,0.8184999823570251,0.44517073035240173,0.8090000152587891,0.47440412640571594
98,0.8190833330154419,0.4435581564903259,0.8116666674613953,0.4662642478942871
99,0.8191666603088379,0.4437412619590759,0.8113333582878113,0.46899935603141785
100,0.8198333382606506,0.4438643753528595,0.8119999766349792,0.4680798351764679
101,0.8211666941642761,0.4421640932559967,0.809333324432373,0.47763219475746155
102,0.8232499957084656,0.44070789217948914,0.8043333292007446,0.4799812138080597
103,0.8194166421890259,0.4401479959487915,0.8169999718666077,0.4607376158237457
104,0.8226666450500488,0.43788206577301025,0.8100000023841858,0.47571948170661926
105,0.8213333487510681,0.43839383125305176,0.8083333373069763,0.47257283329963684
106,0.8237500190734863,0.43844300508499146,0.815666675567627,0.4606480002403259
107,0.8240000009536743,0.4366362988948822,0.8166666626930237,0.4585273563861847
108,0.8228333592414856,0.4356010854244232,0.815666675567627,0.46260562539100647
109,0.8233333230018616,0.43673983216285706,0.8176666498184204,0.4602668583393097
110,0.8244166374206543,0.43422600626945496,0.8046666383743286,0.4769958555698395
111,0.824999988079071,0.4336869716644287,0.815666675567627,0.4593796730041504
112,0.8234166502952576,0.4329100251197815,0.8169999718666077,0.45982375741004944
113,0.8238333463668823,0.433053195476532,0.8153333067893982,0.46611258387565613
114,0.8245000243186951,0.43201497197151184,0.8146666884422302,0.4649088680744171
115,0.8239166736602783,0.4307296574115753,0.8216666579246521,0.4549351930618286
116,0.8255000114440918,0.42951807379722595,0.8183333277702332,0.45752355456352234
117,0.8259999752044678,0.4283323884010315,0.8140000104904175,0.4559498429298401
118,0.8255000114440918,0.42872533202171326,0.8186666369438171,0.4583792984485626
119,0.8254166841506958,0.4287734925746918,0.8213333487510681,0.4525021016597748
120,0.828083336353302,0.4269919693470001,0.8190000057220459,0.46076494455337524
121,0.8288333415985107,0.4257391691207886,0.8223333358764648,0.4512419104576111
122,0.8274999856948853,0.42528149485588074,0.8206666707992554,0.4504532814025879
123,0.8293333053588867,0.4251134395599365,0.8090000152587891,0.4624386429786682
124,0.8273333311080933,0.4244207739830017,0.8206666707992554,0.4510117471218109
125,0.8285833597183228,0.42328396439552307,0.8236666917800903,0.4477689564228058
126,0.8275833129882812,0.4221431612968445,0.8196666836738586,0.45398926734924316
127,0.8274166584014893,0.4219974875450134,0.8230000138282776,0.4463694989681244
128,0.8289999961853027,0.41993024945259094,0.8223333358764648,0.4483242630958557
129,0.8305833339691162,0.42024698853492737,0.8246666789054871,0.4452638328075409
130,0.82833331823349,0.4210645258426666,0.8243333101272583,0.44850248098373413
131,0.8319166898727417,0.4177602529525757,0.8183333277702332,0.4571416974067688
132,0.8308333158493042,0.4185762405395508,0.8270000219345093,0.4429197311401367
133,0.8321666717529297,0.41506490111351013,0.8186666369438171,0.4541434645652771
134,0.831333339214325,0.4172920286655426,0.815666675567627,0.451259046792984
135,0.8327500224113464,0.4152548909187317,0.8220000267028809,0.45755550265312195
136,0.8314999938011169,0.4155958592891693,0.8286666870117188,0.44321802258491516
137,0.8326666951179504,0.4142398238182068,0.8273333311080933,0.44350680708885193
138,0.8325833082199097,0.41387006640434265,0.8149999976158142,0.46105799078941345
139,0.8331666588783264,0.41399452090263367,0.82833331823349,0.43895357847213745
140,0.8357499837875366,0.4125574231147766,0.8109999895095825,0.47140923142433167
141,0.8305833339691162,0.41198986768722534,0.824999988079071,0.44698140025138855
142,0.8334166407585144,0.4109375774860382,0.8230000138282776,0.4436701536178589
143,0.8343333601951599,0.4101341962814331,0.8073333501815796,0.4800421893596649
144,0.8331666588783264,0.4099189341068268,0.8226666450500488,0.44883304834365845
145,0.8347499966621399,0.40960660576820374,0.8163333535194397,0.44911980628967285
146,0.8336666822433472,0.4076492190361023,0.8286666870117188,0.4369546175003052
1 epoch accuracy loss val_accuracy val_loss
2 0 0.42133334279060364 1.092440128326416 0.5216666460037231 1.0831907987594604
3 1 0.48258334398269653 1.0691678524017334 0.578000009059906 1.0515673160552979
4 2 0.5686666369438171 1.0266000032424927 0.6179999709129333 0.9952982664108276
5 3 0.6392499804496765 0.962194561958313 0.6690000295639038 0.9293439388275146
6 4 0.6725000143051147 0.8931296467781067 0.6743333339691162 0.8646112680435181
7 5 0.6887500286102295 0.8338881731033325 0.6893333196640015 0.8154566884040833
8 6 0.6955000162124634 0.7897202372550964 0.6940000057220459 0.7788802981376648
9 7 0.7021666765213013 0.7585954070091248 0.7016666531562805 0.7553337216377258
10 8 0.7095000147819519 0.7358428835868835 0.7093333601951599 0.7391981482505798
11 9 0.7130833268165588 0.7185309529304504 0.7113333344459534 0.7247134447097778
12 10 0.7210000157356262 0.7036754488945007 0.7170000076293945 0.7144900560379028
13 11 0.7225000262260437 0.6903489828109741 0.7210000157356262 0.7021248936653137
14 12 0.7294999957084656 0.6791210174560547 0.7263333201408386 0.6896677017211914
15 13 0.7315833568572998 0.6669951677322388 0.731333315372467 0.6810266971588135
16 14 0.7365000247955322 0.6564996838569641 0.7366666793823242 0.6689144372940063
17 15 0.7398333549499512 0.6476236581802368 0.7396666407585144 0.6566316485404968
18 16 0.7418333292007446 0.639543890953064 0.7443333268165588 0.6492511034011841
19 17 0.7449166774749756 0.6309488415718079 0.7440000176429749 0.6400158405303955
20 18 0.7507500052452087 0.622377872467041 0.7490000128746033 0.6308714151382446
21 19 0.7514166831970215 0.6148524284362793 0.750333309173584 0.6255932450294495
22 20 0.7551666498184204 0.6085936427116394 0.7566666603088379 0.6217103600502014
23 21 0.7580000162124634 0.6017386317253113 0.7593333125114441 0.609600841999054
24 22 0.7609999775886536 0.5949487090110779 0.7543333172798157 0.6064338088035583
25 23 0.7635833621025085 0.5881058573722839 0.7549999952316284 0.6035630106925964
26 24 0.7632499933242798 0.5832110047340393 0.7663333415985107 0.5898523926734924
27 25 0.7692499756813049 0.5766729116439819 0.765666663646698 0.5871346592903137
28 26 0.7705000042915344 0.5713057518005371 0.7730000019073486 0.5790905952453613
29 27 0.7727500200271606 0.5663045048713684 0.7736666798591614 0.5738856792449951
30 28 0.7745833396911621 0.5610684156417847 0.7773333191871643 0.5671684145927429
31 29 0.7770833373069763 0.5563601851463318 0.7760000228881836 0.5635906457901001
32 30 0.7768333554267883 0.5514505505561829 0.7836666703224182 0.5566589832305908
33 31 0.778166651725769 0.5458187460899353 0.7583333253860474 0.5909481048583984
34 32 0.7806666493415833 0.5436875224113464 0.7850000262260437 0.5474307537078857
35 33 0.7822499871253967 0.5379191637039185 0.784333348274231 0.5488753914833069
36 34 0.7837499976158142 0.5342518091201782 0.7753333449363708 0.5533681511878967
37 35 0.7864166498184204 0.5308119058609009 0.7820000052452087 0.5461623668670654
38 36 0.7887499928474426 0.5277165770530701 0.781333327293396 0.5409450531005859
39 37 0.7874166369438171 0.5240803360939026 0.7893333435058594 0.5401000380516052
40 38 0.7885833382606506 0.5225352644920349 0.7910000085830688 0.5266817808151245
41 39 0.7888333201408386 0.5176399946212769 0.7926666736602783 0.5274956822395325
42 40 0.7893333435058594 0.5159404277801514 0.793666660785675 0.5229296684265137
43 41 0.7930833101272583 0.5116210579872131 0.7756666541099548 0.5420834422111511
44 42 0.7921666502952576 0.5109115242958069 0.7956666946411133 0.5163940191268921
45 43 0.7943333387374878 0.5071904063224792 0.7950000166893005 0.5143405795097351
46 44 0.7944166660308838 0.5054174661636353 0.777999997138977 0.528532087802887
47 45 0.796999990940094 0.5010374188423157 0.7983333468437195 0.5131596326828003
48 46 0.796750009059906 0.5006341934204102 0.7973333597183228 0.509623646736145
49 47 0.7987499833106995 0.4990909695625305 0.7993333339691162 0.5073418617248535
50 48 0.7978333234786987 0.497801274061203 0.7986666560173035 0.5058290958404541
51 49 0.796999990940094 0.49675676226615906 0.7986666560173035 0.5052936673164368
52 50 0.7978333234786987 0.49446648359298706 0.7906666398048401 0.5101428627967834
53 51 0.7987499833106995 0.49141305685043335 0.7910000085830688 0.5080826878547668
54 52 0.8018333315849304 0.49017277359962463 0.8009999990463257 0.5003789067268372
55 53 0.7990833520889282 0.4900963008403778 0.8003333210945129 0.5013912916183472
56 54 0.8021666407585144 0.48861438035964966 0.7983333468437195 0.500831127166748
57 55 0.8028333187103271 0.4864603281021118 0.7979999780654907 0.5079330205917358
58 56 0.8043333292007446 0.48527541756629944 0.8059999942779541 0.49590444564819336
59 57 0.8024166822433472 0.4850764274597168 0.800000011920929 0.4999690353870392
60 58 0.8036666512489319 0.4833196997642517 0.8016666769981384 0.4955070912837982
61 59 0.8026666641235352 0.4804866909980774 0.7950000166893005 0.5002061128616333
62 60 0.8040000200271606 0.48245230317115784 0.7979999780654907 0.4973487854003906
63 61 0.8060833215713501 0.47835856676101685 0.7910000085830688 0.5042082071304321
64 62 0.8060833215713501 0.4784422516822815 0.8046666383743286 0.4913029670715332
65 63 0.8070833086967468 0.47728076577186584 0.8006666898727417 0.49307548999786377
66 64 0.8063333630561829 0.47460415959358215 0.8066666722297668 0.4880809187889099
67 65 0.8078333139419556 0.4747520387172699 0.8066666722297668 0.48889628052711487
68 66 0.8077499866485596 0.472565233707428 0.8056666851043701 0.49305960536003113
69 67 0.8102499842643738 0.47163158655166626 0.796999990940094 0.49961018562316895
70 68 0.8096666932106018 0.4724145233631134 0.7990000247955322 0.4905402958393097
71 69 0.8109999895095825 0.4715333580970764 0.8080000281333923 0.48410794138908386
72 70 0.8112499713897705 0.4680226147174835 0.7996666431427002 0.4916672706604004
73 71 0.8115000128746033 0.4687725007534027 0.7926666736602783 0.49787065386772156
74 72 0.809333324432373 0.46770256757736206 0.7903333306312561 0.5011722445487976
75 73 0.812583327293396 0.46606460213661194 0.7983333468437195 0.503963053226471
76 74 0.8112499713897705 0.46567845344543457 0.800000011920929 0.4879962205886841
77 75 0.8104166388511658 0.4644148051738739 0.8100000023841858 0.48002851009368896
78 76 0.812583327293396 0.46399056911468506 0.7940000295639038 0.4991711378097534
79 77 0.8144999742507935 0.4620969295501709 0.7933333516120911 0.5001674294471741
80 78 0.8134999871253967 0.4626724123954773 0.7929999828338623 0.4932369887828827
81 79 0.8146666884422302 0.460686594247818 0.8086666464805603 0.4793894588947296
82 80 0.812416672706604 0.4595262408256531 0.8076666593551636 0.47897687554359436
83 81 0.8136666417121887 0.4590204954147339 0.8090000152587891 0.4824315309524536
84 82 0.8130833506584167 0.45829853415489197 0.8023333549499512 0.4803754389286041
85 83 0.8135833144187927 0.4585408866405487 0.7993333339691162 0.48915770649909973
86 84 0.8139166831970215 0.45737844705581665 0.8063333630561829 0.478768527507782
87 85 0.8145833611488342 0.4551144540309906 0.8119999766349792 0.47424080967903137
88 86 0.8160833120346069 0.4543878138065338 0.8043333292007446 0.4808327257633209
89 87 0.815500020980835 0.4546371400356293 0.7929999828338623 0.49613329768180847
90 88 0.8178333044052124 0.452690064907074 0.793666660785675 0.4978523850440979
91 89 0.8176666498184204 0.45260632038116455 0.8083333373069763 0.473687082529068
92 90 0.8181666731834412 0.45101451873779297 0.8113333582878113 0.4717951714992523
93 91 0.8173333406448364 0.44956472516059875 0.7873333096504211 0.5036012530326843
94 92 0.8181666731834412 0.4505072832107544 0.809333324432373 0.4718765318393707
95 93 0.8172500133514404 0.44963616132736206 0.8133333325386047 0.4736625850200653
96 94 0.8174999952316284 0.44907307624816895 0.8086666464805603 0.4760723412036896
97 95 0.8183333277702332 0.44802454113960266 0.8143333196640015 0.4659152925014496
98 96 0.8210833072662354 0.44540080428123474 0.8140000104904175 0.4660656750202179
99 97 0.8184999823570251 0.44517073035240173 0.8090000152587891 0.47440412640571594
100 98 0.8190833330154419 0.4435581564903259 0.8116666674613953 0.4662642478942871
101 99 0.8191666603088379 0.4437412619590759 0.8113333582878113 0.46899935603141785
102 100 0.8198333382606506 0.4438643753528595 0.8119999766349792 0.4680798351764679
103 101 0.8211666941642761 0.4421640932559967 0.809333324432373 0.47763219475746155
104 102 0.8232499957084656 0.44070789217948914 0.8043333292007446 0.4799812138080597
105 103 0.8194166421890259 0.4401479959487915 0.8169999718666077 0.4607376158237457
106 104 0.8226666450500488 0.43788206577301025 0.8100000023841858 0.47571948170661926
107 105 0.8213333487510681 0.43839383125305176 0.8083333373069763 0.47257283329963684
108 106 0.8237500190734863 0.43844300508499146 0.815666675567627 0.4606480002403259
109 107 0.8240000009536743 0.4366362988948822 0.8166666626930237 0.4585273563861847
110 108 0.8228333592414856 0.4356010854244232 0.815666675567627 0.46260562539100647
111 109 0.8233333230018616 0.43673983216285706 0.8176666498184204 0.4602668583393097
112 110 0.8244166374206543 0.43422600626945496 0.8046666383743286 0.4769958555698395
113 111 0.824999988079071 0.4336869716644287 0.815666675567627 0.4593796730041504
114 112 0.8234166502952576 0.4329100251197815 0.8169999718666077 0.45982375741004944
115 113 0.8238333463668823 0.433053195476532 0.8153333067893982 0.46611258387565613
116 114 0.8245000243186951 0.43201497197151184 0.8146666884422302 0.4649088680744171
117 115 0.8239166736602783 0.4307296574115753 0.8216666579246521 0.4549351930618286
118 116 0.8255000114440918 0.42951807379722595 0.8183333277702332 0.45752355456352234
119 117 0.8259999752044678 0.4283323884010315 0.8140000104904175 0.4559498429298401
120 118 0.8255000114440918 0.42872533202171326 0.8186666369438171 0.4583792984485626
121 119 0.8254166841506958 0.4287734925746918 0.8213333487510681 0.4525021016597748
122 120 0.828083336353302 0.4269919693470001 0.8190000057220459 0.46076494455337524
123 121 0.8288333415985107 0.4257391691207886 0.8223333358764648 0.4512419104576111
124 122 0.8274999856948853 0.42528149485588074 0.8206666707992554 0.4504532814025879
125 123 0.8293333053588867 0.4251134395599365 0.8090000152587891 0.4624386429786682
126 124 0.8273333311080933 0.4244207739830017 0.8206666707992554 0.4510117471218109
127 125 0.8285833597183228 0.42328396439552307 0.8236666917800903 0.4477689564228058
128 126 0.8275833129882812 0.4221431612968445 0.8196666836738586 0.45398926734924316
129 127 0.8274166584014893 0.4219974875450134 0.8230000138282776 0.4463694989681244
130 128 0.8289999961853027 0.41993024945259094 0.8223333358764648 0.4483242630958557
131 129 0.8305833339691162 0.42024698853492737 0.8246666789054871 0.4452638328075409
132 130 0.82833331823349 0.4210645258426666 0.8243333101272583 0.44850248098373413
133 131 0.8319166898727417 0.4177602529525757 0.8183333277702332 0.4571416974067688
134 132 0.8308333158493042 0.4185762405395508 0.8270000219345093 0.4429197311401367
135 133 0.8321666717529297 0.41506490111351013 0.8186666369438171 0.4541434645652771
136 134 0.831333339214325 0.4172920286655426 0.815666675567627 0.451259046792984
137 135 0.8327500224113464 0.4152548909187317 0.8220000267028809 0.45755550265312195
138 136 0.8314999938011169 0.4155958592891693 0.8286666870117188 0.44321802258491516
139 137 0.8326666951179504 0.4142398238182068 0.8273333311080933 0.44350680708885193
140 138 0.8325833082199097 0.41387006640434265 0.8149999976158142 0.46105799078941345
141 139 0.8331666588783264 0.41399452090263367 0.82833331823349 0.43895357847213745
142 140 0.8357499837875366 0.4125574231147766 0.8109999895095825 0.47140923142433167
143 141 0.8305833339691162 0.41198986768722534 0.824999988079071 0.44698140025138855
144 142 0.8334166407585144 0.4109375774860382 0.8230000138282776 0.4436701536178589
145 143 0.8343333601951599 0.4101341962814331 0.8073333501815796 0.4800421893596649
146 144 0.8331666588783264 0.4099189341068268 0.8226666450500488 0.44883304834365845
147 145 0.8347499966621399 0.40960660576820374 0.8163333535194397 0.44911980628967285
148 146 0.8336666822433472 0.4076492190361023 0.8286666870117188 0.4369546175003052

View file

@ -0,0 +1,22 @@
import joblib
import numpy as np
from keras import models
import scipy.stats
# Import the accuracy of both models
e_a = 0.856333315372467 # without augmentation
e_b = 0.843666672706604 # with data augmentation
# # of data points in both test sets
L = 3000
# Compute classification variance for both models
s_a = e_a * (1 - e_a)
s_b = e_b * (1 - e_b)
# Compute Student's T-test
T = (e_a - e_b) / np.sqrt((s_a / L) + (s_b / L))
print("T test:\t\t\t %1.06f" % T)
print("P-value:\t\t %1.06f" % (scipy.stats.t.sf(abs(T), df=L) * 2))
print("No aug variance:\t %1.06f" % s_a)
print("With aug variance:\t %1.06f" % s_b)

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 17 KiB