NOTE ON MODEL DOWNLOAD FROM SWITCHDRIVE

Due to space constraints, all the neural network models in this assigment were saved
and uploaded on SWITCHdrive. To download them, make sure you have curl, gzip,
and tar (all installed by default on MacOS) and then run:

./download. sh

having as current working directory (pwd) the root assigment directory
as2_Maggioni_Claudio.

The script will download automatically the models.

Then, in order to run the models with the run_taskx.py, make sure you first cd in the
deliverable directory.

Should the script not work, please download the compressed T1 and T2 models from
https://drive.switch.ch/index.php/s/FoubFgS6PBy8UM5/download and uncompress the
downloaded . tar.gz file in the deliverable/ directory, and then make sure the directo-
ries deliverable/nn_task1 and deliverable/nn_task2 contain 3 .h5 files in total.

Claudio Maggioni 1

https://drive.switch.ch/index.php/s/F0ubFgS6PBy8UM5/download

MACHINE LEARNING
UNIVERSITA DELLA SVIZZERA ITALIANA

Assignment 2

Claudio Maggioni

June 9, 2021

In this assignment you are asked to:

1. Implement a neural network to classify images from the CIFAR10 dataset;

2. Fine-tune a pre-trained neural network to classify rock, paper, scissors hand ges-
tures.

Both requests are very similar to what we have seen during the labs. However, you are
required to follow exactly the assignment’s specifications.

1 FOLLOW OUR RECIPE

Implement a multi-class classifier to identify the subject of the images from CIFAR-10
data set. To simply the problem, we restrict the classes to 3: airplane, automobile and
bird.

1. Download and load CIFAR-10 dataset using the following function, and consider
only the first three classes. Check src/utils.py, there is already a function for
this!

2. Preprocess the data:

¢ Normalize each pixel of each channel so that the range is [0, 1];

* Create one-hot encoding of the labels.

3. Build a neural network with the following architecture:

¢ Convolutional layer, with 8 filters of size 5x5, stride of 1x1, and ReLU acti-
vation;

* Max pooling layer, with pooling size of 2x2;

¢ Convolutional layer, with 16 filters of size 3x3, stride of 2x2, and ReLU
activation;

Claudio Maggioni 2

https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/cifar10/load_data

¢ Average pooling layer, with pooling size of 2x2;
¢ Layer to convert the 2D feature maps to vectors (Flatten layer);
¢ Dense layer with 8 neurons and tanh activation;

* Dense output layer with softmax activation;

4. Train the model on the training set from point 1 for 500 epochs:

¢ Use the RMSprop optimization algorithm, with a learning rate of 0.003 and a
batch size of 128;

* Use categorical cross-entropy as a loss function;

* Implement early stopping, monitoring the validation accuracy of the model
with a patience of 10 epochs and use 20% of the training data as validation
set;

* When early stopping kicks in, and the training procedure stops, restore the
best model found during training.

5. Draw a plot with epochs on the x-axis and with two graphs: the train accuracy and
the validation accuracy (remember to add a legend to distinguish the two graphs!).

6. Assess the performances of the network on the test set loaded in point 1, and
provide an estimate of the classification accuracy that you expect on new and
unseen images.

7. Bonus (Optional) Tune the learning rate and the number of neurons in the last
dense hidden layer with a grid search to improve the performances (if feasible).

¢ Consider the following options for the two hyper-parameters (4 models in
total):

— learning rate: [0.01, 0.0001]
— number of neurons: [16, 64]
* Keep all the other hyper-parameters as in point 3.

¢ Perform a grid search on the chosen ranges based on hold-out cross-validation
in the training set and identify the most promising hyper-parameter setup.

e Compare the accuracy on the test set achieved by the most promising config-
uration with that of the model obtained in point 4. Are the accuracy levels
statistically different?

1.1 Comment

The network model was built and trained according to the given specification.

The performance on the given test set is of 0.3879 loss and 85.63% accuracy. In order
to assess performance on new and unseen images a statistical confidence interval is
necessary. Since the accuracy is by construction a binomial measure (since an image can
either be correctly classified or not, and we repeat this Bernoulli process for each test set
datapoint), we perform a binomial distribution confidence interval computation for 95%
confidence. The code use to do this is found in the notebook src/Assignment 2.ipynb
under the section Statistical tests on CIFAR classifier. We conclude stating that with 95%
confidence the accuracy for new and unseen images will fall between ~ 84.29% and
~ 86.82%.

The training and validation accuracy curves for the network is shown below:

Claudio Maggioni 3

a0 1 —e— Training accuracy

85 - Validation accuracy

a0 1

75 4 f

70 1

Accuracy [3]

65 1
60 -

0 10 20 30 4 S0 &
Epoch

Figure 1: Training and validation accuracy curves during fitting for the CIFAR10 classi-
fier

1.2 Bonus

A plot of the validation loss and accuracy over training epochs for each of the configu-
rations in the grid search are given below. The plot is useful to understand that for both
learning rates chosen, choosing 64 neurons will lead to overfitting, due to the validation
loss being higher than the training loss. This overfitting cannot be easily avoided with
the adopted early stopping procedure, since our implementation monitors validation
loss and not validation accuracy.

The second observation that can be found from the plots is that a smaller learning rate
increases the number of epochs needed to achieve convergence but it also increases the
model accuracy and decreases the model loss.

By running all the models on the test set, using the script run_task1_bonus.py in the
deliverable/ directory, we obtain the following loss and accuracy:

Learn rate # Neurons Loss Accuracy

0.01 16 0.4597 0.8117
0.01 64 0.4508 0.8290
0.0001 16 0.4048 0.8437
0.0001 64 0.4073 0.8343

We choose the third configuration as the optimal one since it has highest accuracy (and
lowest loss too). We then perform a T-test between this model and the one built in the
previous section using the script src/t_test_bonus.py.

The T-test gives a T-score of 1.374106, corresponding to a P-value of 0.169511, which
makes us accept the null hypothesis therefore concluding that there is no significant
difference between this optimal model and the one trained in the previous section.

Claudio Maggioni 4

1.2 —e— Training accuracy
—e— Validation accuracy
> 1.0 A —e— Training loss
§ —e— Validation loss
S 0.8
<
% 0.6 -
o
—
0.4
0.2 1 I 1 1 1
0 50 100 150 200
Epoch

Figure 2: Training and validation accuracy curves during fitting for the CIFAR10 classi-
fier (0.0001 learning rate, 16 neurons)

1.2 —e— Training accuracy
—e— Validation accuracy
> 1.0 - —e— Training loss
§ —e— Validation loss
S 0.8
<
3 0.6 -
(@)
-
0.4
0.2 I 1 I I

0 25 50 75 100 125 150
Epoch

Figure 3: Training and validation accuracy curves during fitting for the CIFAR10 classi-
fier (0.0001 learning rate, 64 neurons)

Claudio Maggioni 5

1.2 - —e— Training accuracy
—e— Validation accuracy
> 1.0 A —e— Training loss
§ —e— Validation loss
S 0.8 -
<
% 0.6
(@)
—
0.4 A
0.2 1 I 1 1 1
0 5 10 15 20
Epoch

Figure 4: Training and validation accuracy curves during fitting for the CIFAR10 classi-
fier (0.01 learning rate, 16 neurons)

1.2 - —e— Training accuracy
—e— Validation accuracy

-~ 1.0 - —e— Training loss
§ —e— Validation loss
S 0.8
<
% 0.6 -
(@]
-

0.4

0.2 T T T T

0 10 20 30
Epoch

Figure 5: Training and validation accuracy curves during fitting for the CIFAR10 classi-
fier (0.01 learning rate, 64 neurons)

Claudio Maggioni 6

2 TRANSFER LEARNING

In this task, we will fine-tune the last layer of a pretrained model in order to build a
classifier for the rock, paper, scissors dataset that we acquired for the lab. The objective is
to make use of the experience collected on a task to bootstrap the performances on a
different task. We are going to use the VGG16 network, pretrained on Imagenet to com-
pete in the ILSVRC-2014 competition.

VGG16 is very expensive to train from scratch, but luckily the VGG team publicly released
the trained weights of the network, so that people could use it for transfer learning. As
we discussed during classes, this can be achieved by removing the last fully connected
layers form the pretrained model and by using the output of the convolutional layers
(with freezed weights) as input to a new fully connected network. This last part of the
model is then trained from scratch on the task of interest.

1. Use keras to download a pretrained version of the vgg16 network. You can start
from the snippet of code you find on the repository of the assignment.

2. Download and preprocess the rock, paper, scissor dataset that we collected for the
lab. You find the functions to download and build the dataset in src/utils.py.
Vggl6 provides a function to prepropress the input
applications.vggl6.preprocess_input
You may decide to use it. Use 224 x 224 as image dimension.

3. Add a hidden layer (use any number of units and the activation function that
you want), then add an output layer suitable for the hand gesture classification
problem.

4. Train with and without data augmentation and report the learning curves (train
and validation accuracy) for both cases.

¢ Turn on the GPU environment on Colab, otherwise training will be slow.
¢ Train for 50 epochs or until convergence.

¢ Comment if using data augmentation led to an improvement or not.

2.1 Comment

The built network in its dense part is composed by a 128-neuron ReLU-activated hidden
layer and a 3-neuron softmax output layer. The input to the network is at first resized
to 224x224 size and then normalized according to VGG16 normalization factors (refer to
the function process_vgg16 in the src/Assignment 2.ipynb notebook for details on the
normalization process). Classification labels were first converted from string labels to
numeric ones, (i.e. *scissors’ =0, 'paper’ =1, rock’ =2), and then the numeric encod-
ing was in turn converted to a one-hot encoding using the keras.utils.to_categorical
function.

Both the data-augmented and non-augmented network were trained using the ADAM
optimizer with 0.001 learning rate for 50 epochs with an early stopping procedure with
10 epochs patience.

Both models were saved and both can be run at the same time on the given test set by
executing deliverable/run_task2.py.

The training and validation accuracy curves for both the data-augmented and the not
augmented networks are shown below:

Claudio Maggioni 7

https://github.com/marshka/ml-20-21/tree/main/assignment_2

100 - -
—— Training accuracy
0 - Validation accuracy
ﬁ &Gl -
o
g
=2 40 4
<
20 -
00 -
0 10 20 30
Epoch

Figure 6: Training and validation accuracy curves during fitting for the not data aug-
mented VGG16 classifier

—e— Training accuracy
Validation accuracy
0.8 1
& 0T A
@
=
]
< 0.6 1
r
|
|
0.5 1 |
0 10 2 30 4 50
Epoch
Figure 7: Training and validation accuracy curves during fitting for the data augmented
VGG16 classifier
2.2 T-Test

The findings shown below were computed using the script src/t_test.py.

To compare the trained model with and without data augmentation, we perform a two-
tailed Student T-test between the models. The test report that the models have different
accuracy with 99.999973% confidence, and the model trained with data augmentation
has lower variance. Therefore, we conclude that the model trained with data augmenta-
tion is the statistically better model out of the two.

The student T-test of course is a valid argument only for this specific instance of the
application of data augmentation. However, in the general case we can say that per-
forming data augmentation on the training and validation data is intuitively better in

Claudio Maggioni 8

order to assure the network is able to correctly identify rock, paper or scissors from all
angles and zoom levels.

On the given test set, the model trained with data augmentation has ~ 90.00% accuracy
while the model trained without data augmentation has ~ 77.33% accuracy.

Claudio Maggioni 9

	Follow our recipe
	Comment
	Bonus

	Transfer learning
	Comment
	T-Test

