
Machine Learning

Università della Svizzera italiana

Assignment 1

Maggioni Claudio

May 7, 2021

The assignment is split into two parts: you are asked to solve a regression problem, and answer
some questions. You can use all the books, material, and help you need. Bear in mind that the
questions you are asked are similar to those you may find in the final exam, and are related to
very important and fundamental machine learning concepts. As such, sooner or later you will
need to learn them to pass the course. We will give you some feedback afterwards.
!! Note that this file is just meant as a template for the report, in which we reported part of the
assignment text for convenience. You must always refer to the text in the README.md file as the
assignment requirements.

Regression problem

This section should contain a detailed description of how you solved the assignment, including
all required statistical analyses of the models’ performance and a comparison between the linear
regression and the model of your choice. Limit the assignment to 2500 words (formulas, tables,
figures, etc., do not count as words) and do not include any code in the report.

Premise on data splitting

In order to perform a correct statistical analysis, I have splitted the given datapoints in a training
set, a validation set and a test set. The test set has 200 points (10% of the given datapoints), the
validation set has 180 data points (10% of the remaining 90% of the given datapoint) while the
training set has 1620 datapoints (all the remaining datapoints).

For the linear model, I will perform the linear regression using both the training and the validation
datapoints (since there is no need to choose hyperparameters since the given family of models
requires none). For the nonlinear model, which is a feedforward NN in my case, I used the
training set to fit the model and I have used the validation set in order to choose the architecture
of the neural network.

Task 1

Use the family of models f (x, θ) = θ0 + θ1 · x1 + θ2 · x2 + θ3 · x1 · x2 + θ4 · sin(x1) to fit the data.
Write in the report the formula of the model substituting parameters θ0, . . . , θ4 with the estimates
you’ve found:

f (x, θ) = 3.13696− 0.468921 · x1 − 0.766447 · x2 + 0.0390513 · x1x2 − 0.918346 · sin(x1)

Maggioni Claudio 1



2

Evaluate the test performance of your model using the mean squared error as performance
measure.

On the 200-datapoint test set described before, the MSE of this linear model is 1.22265. This result
can be reproduced by running src/statistical_tests.py.

Task 2

Consider any family of non-linear models of your choice to address the above regression problem.
Evaluate the test performance of your model using the mean squared error as performance
measure. Compare your model with the linear regression of Task 1. Which one is statistically
better?

The model I’ve chosen is a feed-forward neural network with 2 hidden layers:

• one 22-neuron dense layer with hyperbolic tangent activation function;
• one 15-neuron dense layer with sigmoidal activation function;

Finally, the output neuron has a linear activation function. As described before, the validation set
was used to manually tailor the NNs architecture.

The fitted model has these final performance parameters:

• Final MSE on validation set ≈ 0.0143344
• Final MSE on the test set ≈ 0.0107676

I conclude the NN non-linear model is better than the linear regression model because of the
lower test set MSE. Since the test set is 200 elements big, we can safely assume that the loss
function applied on the test set is a resonable approximation of the structural risk for both models.

In order to motivate this intuitive argument, I will perform a student’s T-test to show that the
non-linear model is indeed statistically better with 95% confidence. The test was implemented in
src/statistical_tests.py and it has been performed by spitting the test set, assuming both
resulting sets have an expectation of the noise equal to 0, and by computing mean, variance and
T-score.

The results of the test are the following:

• T-test result: 5.37324
• Linear model noise variance: 6.69426
• Feedforward NN noise variance: 0.348799 · 10−3

The test is clearly outside of the 95% confidence interval of [−1.96, 1.96] and thus we reject the
null hypothesis. Since the variance is lower for the NN we conclude that this model is indeed the
better one statistically speaking.

Task 3 (Bonus)

In the Github repository of the course, you will find a trained Scikit-learn model that we built
using the same dataset you are given. This baseline model is able to achieve a MSE of 0.0194,
when evaluated on the test set. You will get extra points if the test performance of your model is
better (i.e., the MSE is lower) than ours. Of course, you also have to tell us why you think that
your model is better.

In order to understand if my model is better than the baseline model, I performed another
Student’s T-test re-using the subset of the test set I’ve used for my linear model. The results of
the new test are the following:

• T-test result: 1.1777 (for a p value of 0.2417396)
• Baseline model noise variance: 0.366316 · 10−3

• Feedforward NN noise variance: 0.348799 · 10−3

Maggioni Claudio 2

https://github.com/marshka/ml-20-21


3

This test would accept my model as the better one (as the variance is lower) with a 75% confidence
interval, which is far from ideal but still can be significant and could be a good chance at having
a better model on the hidden test set.

To further analyze the performance of my NN w.r.t. the baseline model, I have computed the
MSE over my entire 200-datapoints test set for both models. Here are the results:

• MSE on entire test set for baseline model: 0.0151954
• MSE on entire test set for feedforward NN model: 0.0107676

My model shows lower MSE for this particular test set, but even if this test wasn’t used to train
both sets of course the performance may change for a different test set like the hidden one. The
T-test performed before suggests that my model might have a decent chance at performing better
than the baseline model, but I cannot say that for sure or with a reasonable (like 90% or 95%)
confidence.

Questions

Q1. Training versus Validation

1. Explain the curves’ behavior in each of the three highlighted sections of the figures,
namely (a), (b), and (c).

In the highlighted section (a) the expected test error, the observed validation error and the
observed training error are significantly high and close toghether. All the errors decrease
as the model complexity increases. In (c), instead, we see a low training error but high
validation and expected test error. The last two increase as the model complexity increases
while the training error is in a plateau. Finally, in (b), we see the test and validation error
curves reaching their respectively lowest points while the training error curve decreases as
the model complexity increases, albeit in a less steep fashion as its behaviour in (a).

2. Is any of the three section associated with the concepts of overfitting and underfitting?
If yes, explain it.

Section (a) is associated with underfitting and section (c) is associated with overfitting.

The behaviour in (a) is fairly easy to explain: since the model complexity is insufficient
to capture the behaviour of the training data, the model is unable to provide accurate
predictions and thus all MSEs we observe are rather high. It’s worth to point out that the
training error curve is quite close to the validation and the test error: this happens since the
model is both unable to learn accurately the training data and unable to formulate accurate
predictions on the validation and test data.

In (c) instead, the model complexity is higher than the intrinsic complexity of the data
to model, and thus this extra complexity will learn the intrinsic noise of the data. This
is of course not desirable, and the dire consequences of this phenomena can be seen
in the significant difference between the observed MSE on training data and MSEs for
validation and test data. Since the model learns the noise of the training data, the model will
accurately predict noise fluctuations on the training data, but since this noise is completely
meaningless information for fitting new datapoints, the model is unable to accurately
predict for validation and test datapoints and thus the MSEs for those sets are high.

Finally in (b) we observe fairly appropriate fitting. Since the model complexity is at least on
the same order of magnitude of the intrinsic complexity of the data the model is able to
learn to accurately predict new data without learning noise. Thus, both the validation and
the test MSE curves reach their lowest point in this region of the graph.

3. Is there any evidence of high approximation risk? Why? If yes, in which of the below
subfigures?

Depending on the scale and magnitude of the x axis, there could be significant approxi-
mation risk. This can be observed in subfigure (b), namely by observing the difference in

Maggioni Claudio 3



4

complexity between the model with lowest validation error and the optimal model (the
model with lowest expected test error). The distance between the two lines indicated that
the currently chosen family of models (i.e. the currently chosen gray box model function,
and not the value of its hyperparameters) is not completely adequate to model the process
that generated the data to fit. High approximation risk would cause even a correctly fitted
model to have high test error, since the inherent structure behind the chosen family of
models would be unable to capture the true behaviour of the data.

4. Do you think that by further increasing the model complexity you will be able to bring
the training error to zero?

Yes, I think so. The model complexity could be increased up to the point where the model
would be so complex that it could actually remember all x-y pairs of the training data, thus
turning the model function effectively in a one-to-one direct mapping between input and
output data of the training set. Then, the loss on the training dataset would be exactly 0.
This of course would mean that an absurdly high amount of noise would be learned as well,
thus making the model completely useless for prediction of new datapoints.

5. Do you think that by further increasing the model complexity you will be able to bring
the structural risk to zero?

No, I don’t think so. In order to achieve zero structural risk we would need to have an
infinite training dataset covering the entire input parameter domain. Increasing the model’s
complexity would actually make the structural risk increase due to overfitting.

Q2. Linear Regression

Comment and compare how the (a.) training error, (b.) test error and (c.) coefficients would
change in the following cases:

1. x3 is a normally distributed independent random variable x3 ∼ N (1, 2)

With this new variable, the coefficients θ1 and θ2 will not change significantly for the new
optimal model. Training and test error behave similarly, although the training error may
be higher in the first iteration of the learning procedure. All this variations are due to the
fact that the new variable x3 is completely independent from x1 and x2, and consequently
from y. Therefore, the model will “understand” that x3 contains no information at all and
thus set θ3 to 0. This effect would be achieved even more quickly by using Lasso instead of
linear regression, since Lasso tends to set parameters to zero when their linear regression
optimal value would be already close to 0.

2. x3 = 2.5 · x1 + x2

With this new variable, the coefficients would indeed change but test and training error
would stay the same. Since x3 is a linear combination of x1 and x2, then we can rewrite the
model function in the following way:

f (x, θ) = θ1x1 + θ2x2 + θ3(2.5x1 + x2) = (θ1 + 2.5θ3)x1 + (θ2 + θ3)x2

This shows that even if the value of θ1 and θ2 would change if this term is introduced, the
solution that would be found through linear regression would still be effectively equivalent
w.r.t. effectiveness and MSE to the optimal model for the original family of models.

3. x3 = x1 · x2

If the underlying process generating the data would also depend on an x1 · x2 operation,
then this additional input variable would change the parameters, improve the training
error, and depending on if the impact of this quadratic term on the original data-generating
process is small or big, it would slighty or considerably improve the test error.

Maggioni Claudio 4



5

Essentially, this parameter would had useful complexity to the model, which may be
beneficial if the model is underfitted w.r.t. number of variables in the linear regression
function, or otherwise detrimental if the model is correctly fitted or overfitted already.

Q3. Classification

1. Your boss asked you to solve the problem using a perceptron and now he’s upset because
you are getting poor results. How would you justify the poor performance of your
perceptron classifier to your boss?

The classification problem in the graph, according to the data points shown, is quite similar
to the XOR or ex-or problem. Since in 1969 that problem was proved impossible to solve by
a perceptron model by Minsky and Papert, then that would be quite a motivation in front
of my boss.

On a more general (and more serious) note, the perceptron model would be unable to solve
the problem in the picture since a perceptron can solve only linearly-separable classification
problems, and even through a simple graphical argument we would be unable to find a line
able able to separate yellow and purple dots w.r.t. a decent approximation simply due to
the way the dots are positioned.

2. Would you expect to have better luck with a neural network with activation function
h(x) = −x · e−2 for the hidden units?

First of all we notice that that activation function is still linear, even if a −e−2 scaling factor
is applied to the output. Since the problem is not linearly separable, we would still have
bad luck since the new family of models would still be inadequate for solving the problem.

3. What are the main differences and similarities between the perceptron and the logistic
regression neuron?

The perceptron neuron and the logistic regression neuron both are dense neurons that
recieve as parameters all values from the previous layer as single scalars. Both require a
number of parameters equal to the number of inputs, which are used as scaling factors for
the inputs recieved. The main difference between the neurons is the activation function:
the perceptron uses an heavyside activation function, while the logistic regression neuron
uses a sigmoidal function, providing a probabliistic interpretation of the output w.r.t.
the classification problem (i.e. by instead of providing just a “in X class” or “not in X
class” indication, the logistic regression neuron can output in the continuous [0, 1] range a
probabliity of said element being in the class).

Maggioni Claudio 5


	Regression problem
	Premise on data splitting
	Task 1
	Task 2
	Task 3 (Bonus)

	Questions
	Q1. Training versus Validation
	Q2. Linear Regression
	Q3. Classification


