
Assginment 1 – Software Design and
Modelling

Volodymyr Karpenko Claudio Maggioni

October 18, 2022

1 Project selection process

We need to find a project that is a single unit in terms of compilation modules1 self contained
and with as little external dependencies as possible to ease the analysis project. Additionally,
it would be nice if we choose a project that we already know as library clients.

1.1 Projects Considered

We considered the following GitHub repositories:

vavr-io/vavr a Java library for functional programming, discarded as the project is less than
20K LOC and doesn’t meet the selection criteria;

bitcoin4j/bitcoin4j a Java implementation of the bitcoin protocol, discarded as the project is
distributed in several subprojects;

FasterXML/jackson-core a Java JSON serialization and deserialization library. We chose this
library because it meets the selection criteria, it doesn’t rely on external components for
its execution, and its project structure uses a single Maven module for its sources and
thus easy to analyze.

1.2 The Jackson Core Library

As already mentioned, Jackson is a library that offers serialization and deseralization capa-
bilities in JSON format. The library is highly extensible and customizable through a robust
but flexible API and module suite that allows to change the serialization and deserialization
rules, or in the case of the jackson-dataformat-xml module, to allow to target XML instead
of JSON.
The chosen repository contains only the core module of Jackson. The core module implements

the necessary library abstractions and interfaces to allow other modules to be plugged-in.
Additionally, the core module implements the tokenizer and low-level abstractions to work
with the JSON format.
We chose to analyze version 2.13.4 of the module (corresponding to the code under the git tag

jackson-core-2.13.4) because it is the latest stable version available at the time of writing.

1A problem for Pattern4J as compiled .class files are distributed across several directories and would have
to be merged manually for analyzing them

1

2 Analysis Implementation

We use Pattern4 as a pattern detection tool. This tool needs compiled .class files in order
to perform analysis. Therefore, as jackson-core is a standard Maven project, we compile the
sources using the command mvn clean compile. The pom.xml of the library specifies Java 1.6
as a compilation target, which is not supported by JDK 17 or above. We used JDK 11 instead,
as it is the previous LTS version.
An XML dump of the Pattern4j analysis results are included in the submission as the file

analysis.xml.

3 Structural Patterns

3.1 Singleton Pattern

Lots of false positives for the Singleton pattern. Example, com.fasterxml.jackson.core.sym.Name1
has a package private constructor and a public static final instance of it, but reading the doc-
umentation the class represents (short) JSON string literals and therefore is clearly initialized
by client code.
(com.fasterxml.jackson.core omitted for brevity)

sym.Name1, JsonLocation, DefaultIndenter, util.DefaultPrettyPrinter$FixedSpaceIndenter
not a singleton (detected cause of ”convenient” default instance given as static final field),
the constructor is not used but the class is extensible

JsonPointer, filter.TokenFilter like above, but constructors are protected

JsonpCharacterEscapes, util.DefaultPrettyPrinter$NopIndenter, Version a singleton but with
a public constructor that is never called in the module code, may be called in tests

io.JsonStringEncoder like above, but the class is final

util.InternCache, io.CharTypes$AltEscapes actual singleton, thread-unsafe initialization

io.ContentReference like above, but constructor is protected

3.2 Abstract Factory Pattern

Pattern4 detects only two instances of the abstract factory pattern:

TokenStreamFactory which indeed is a factory for JsonParser and JsonGenerator objects,
although two overloaded factory methods exist on this class (one for each class) catering
for different combination of arguments. A concrete implementation of this factory is in-
cluded in the form of the JsonFactory class, although other modules may add additional
implementations to cater for different encodings (like the jackson-dataformat-xml mod-
ule for XML);

TSFBuilder which is also a factory for concrete implementations of TokenStreamFactory
to allow slight changes in the serialization and deserialization rules (e.g. changing the
quote character used in JSON keys from " to ’). Like TokenStreamFactory, this class
is only implemented by one class, namely JsonFactoryBuilder, whitin the scope of this
module. And as mentioned previously, this abstract factory is also likely to be extended
by concrete implementations in other Jackson modules.

2

https://users.encs.concordia.ca/~nikolaos/pattern_detection.html

3.3 Builder Pattern

The builder pattern does not seem to be analyzed by Pattern4, as the analysis output does
not mention the pattern, even just to report that no instances of it have been found (as it is
the case with other patterns, e.g. the observer pattern). A manual search in the source code
produced the following results:

TSFBuilder is also a builder other than an abstract factory. As mentioned previously, this class
allows to alter slightly the serialization and deserialization rules used to build outputtting
JsonFactory objects. Each rule is represented by an object or enum instance implement-
ing the util.JacksonFeature interface. TSFBuilder then provides several overloaded
methods to enable and disable features represented by the interface. Enabled features are
stored in several bitmask protected int fields, which are then directly accessed by the
constructor of the TokenStreamFactory concrete implementation to build;

JsonFactoryBuilder an concrete factory implementation of TSFBuilder that builds Json-
Factory instances;

util.ByteArrayBuilder provides facilities to build byte[] objects of varying length, akin to
StringBuilder building String objects. This is not a strict implementation of the builder
pattern per se (as Java arrays do not have a “real” constructor), but it is nevertheless in-
cluded since the features it exposes (namely dynamic sizing while building) are decoupled
by the underlying (fixed-size) array representation.

4 Creational Patterns

4.1 Adapter Pattern

TBD

4.2 Bridge Pattern

TBD

4.3 Composite Pattern

TBD

4.4 Facade Pattern

TBD

4.5 Proxy Pattern

TBD

5 Behavioral Patterns

5.1 Command Pattern

TBD

3

5.2 Observer Pattern

TBD

5.3 Strategy Pattern

TBD

5.4 Template Method Pattern

TBD

5.5 Visitor Pattern

TBD

4

	Project selection process
	Projects Considered
	The Jackson Core Library

	Analysis Implementation
	Structural Patterns
	Singleton Pattern
	Abstract Factory Pattern
	Builder Pattern

	Creational Patterns
	Adapter Pattern
	Bridge Pattern
	Composite Pattern
	Facade Pattern
	Proxy Pattern

	Behavioral Patterns
	Command Pattern
	Observer Pattern
	Strategy Pattern
	Template Method Pattern
	Visitor Pattern

	Project selection process
	Projects Considered
	The Jackson Core Library

	Analysis Implementation
	Structural Patterns
	Singleton Pattern
	Abstract Factory Pattern
	Builder Pattern

	Creational Patterns
	Adapter Pattern
	Bridge Pattern
	Composite Pattern
	Facade Pattern
	Proxy Pattern

	Behavioral Patterns
	Command Pattern
	Observer Pattern
	Strategy Pattern
	Template Method Pattern
	Visitor Pattern

