
Assignment 1:
Documenting Design Patterns

Software Design & Modeling

Due date: 2022-10-28 at 23:00

1 The assignment
Your assignment in a nutshell:

1. Pick a software project hosted on GitHub. The project should have:

• at least 100 stars,

• at least 100 forks,

• at least 10 open issues, and

• at least 50,000 lines of code.

2. Run a design pattern detection tool on the project.

Using the tool’s output to guide you, inspect the main applications of design patterns in
the project.

3. Write down your findings in a report.
Maximum length of the report: 10 pages (A4 with readable formatting) including pic-
tures and code snippets.

The assignment must be done in pairs of students;1 student pairs must be different in each
assignment. Every group member should contribute equally to the work; the individual grad-
ing will also reflect this.

Once you have identified your partner for the assignment, write it in this spreadsheet within
7 days after this assignment is published. If you cannot find another student to work with
within 7 days, the instructors will pair you up with some other available students.

This assignment contributes to 20% of your overall grade in the course.

1If there is an odd number of students, one group will be made of three students.

1

https://docs.google.com/spreadsheets/d/1xgFLL-DCJXmqaIZJLhPgX8fXSxsyixUWB_a7hi-C-A0


2 Tools and other resources

2.1 How to find projects on GitHub
Query GitHub using its API for projects with the required features. To list projects written in
Java with at least 100 forks, 100 stars, 10 open issues use the URL:

https://api.github.com/search/repositories?q=language:Java&forks_count:

>=100&stargazers_count:>=100&open_issues_count:>=10&page=1

This query lists the first page of results; replace page=1 with page=2, page=3, and so on to
browse all results.

You can add a constraint on file size by adding constraints of the form &size:>100 (which
searches for file at least 100 bytes large). There is no direct way to query for lines of code,
but you can get an approximate count the lines of code of a given repository, without cloning
the project, by summing up the count for each project contributor. You can use the following
JavaScript snippet:2

// replace 'jquery/jquery' with the repository you're interested in

fetch('https://api.github.com/repos/jquery/jquery/stats/contributors')

.then(response => response.json())

.then(contributors => contributors

.map(contributor => contributor.weeks

.reduce((lineCount, week) => lineCount + week.a - week.d, 0)))

.then(lineCounts => lineCounts.reduce((lineTotal, lineCount) => lineTotal + lineCount))

.then(lines => window.alert(lines));

To run it, you can use the Chrome or Chromium browser: go to More tools −→ Developer
tools, open the Console, and paste the snippet. The answer will appear in a pop-up window.

Notice that this way of counting lines of code is imperfect as it only targets the default
branch and may double count code that is merged.3 Thus, remember to do a final sanity
check, using tools such as cloc,4 once you select and clone the project.

2.2 How to detect design patterns
We suggest to use pattern4j as pattern detection tool:

https://users.encs.concordia.ca/~nikolaos/pattern_detection.html

The tool works on Java projects, which means that you have to select a Java project on GitHub
to use pattern4j.

2For example, to analyze GitHub project https://github.com/sosy-lab/java-smt replace jquery/jquery

with sosy-lab/java-smt.
3See this Stack Overflow thread https://bit.ly/2DgOA86.
4https://github.com/AlDanial/cloc

2

https://api.github.com/search/repositories?q=language:Java&forks_count:>=100&stargazers_count:>=100&open_issues_count:>=10&page=1
https://api.github.com/search/repositories?q=language:Java&forks_count:>=100&stargazers_count:>=100&open_issues_count:>=10&page=1
https://users.encs.concordia.ca/~nikolaos/pattern_detection.html
https://github.com/sosy-lab/java-smt
https://bit.ly/2DgOA86
https://github.com/AlDanial/cloc


How to use the tool: 1. compile the project (the tool works on class files), 2. launch
the tool (java -jar pattern4.jar), 3. select the project root (where the class files are),
4. select which patterns to detect, 5. inspect the results.

While the tool itself runs with the latest JRE, it may occasionally fail analyzing bytecode
generated by recent JDKs. If you run into problems (for example, the tool runs but fails to
produce any meaningful output), try compiling your project with an older version of Java, and
then run the pattern detection tool with the same JRE version as the JDK used to compile the
project. If all else fails, you may want to try another project.

Other languages? If you feel adventurous, or simply prefer to work with languages other
than Java, you can look for pattern detection tools for languages other than Java and use them
to do the assignment targeting another language (which must however be object-oriented). If
you choose to do so, please check with the instructors that your choice of tools and language
is reasonable before working on the assignment.

3 What to write in the report

3.1 Report content
The structure of the report is free; it should include all the significant findings emerged during
your work. Things to include in the report’s discussion:

• the project selection process, including mentioning projects you discarded;

• if you initially selected a project (or projects) that turned out to have no design pattern;

• a short description of the selected project with some stats (size, number of contributors,
whether it’s a library or application, and so on);

• an estimate of the accuracy5 (true vs. false positives, and true vs. false negatives) of the
pattern detection tool;

• a quantitative summary of the findings, such as a table with the patterns that have been
found, how many classes of the project they cover, how many applications of each pat-
terns you found, and so on;

• a qualitative discussion of some concrete examples (with snippets of code or other
project artifacts) that you think are interesting;

• whether you found patterns that are variations of the classic patterns we have seen in
class (or in textbooks), and conversely how many verbatim applications of patterns you
found;

5To be estimated by manually inspecting the tool’s output. For a definition of false positive and false negative
see https://en.wikipedia.org/wiki/False_positives_and_false_negatives.

3

https://en.wikipedia.org/wiki/False_positives_and_false_negatives


• a brief (possibly speculative) discussion about whether your findings are likely to be
applicable to other projects or, conversely, they are probably unique to the project you
selected – and why you think this to be the case.

3.2 Tips and tricks
• Looking for projects that are very active (frequent commits in recent months) may make

your job easier and more interesting.

• Do not just look at the code but also at the documentation (README, JavaDoc, any-
thing else) and other artifacts (such as test cases); they all may be referring to patterns.

• Do not trust the tool’s output blindly; even when the tool’s results are sound, try to add
your own judgment on top of them to come up with higher-level and more interesting
findings.

4 How and what to turn in
Turn in your report as a single PDF file using iCorsi under Assignment 1.

4


	The assignment
	Tools and other resources
	How to find projects on GitHub
	How to detect design patterns

	What to write in the report
	Report content
	Tips and tricks

	How and what to turn in

