
Assginment 1 – Software Design and Modelling
Volodymyr Karpenko Claudio Maggioni

October 26, 2022

Contents

1 Project selection process 1
1.1 The Jackson Core Project . 1

2 Analysis Implementation 2

3 Pattern4J Accuracy and Quantitative Analysis 2

4 Structural Patterns 3
4.1 Singleton Pattern . 3
4.2 Abstract Factory Pattern . 4
4.3 Builder Pattern . 5

5 Creational Patterns 5
5.1 Adapter Pattern . 5
5.2 Decorator Pattern . 6
5.3 Bridge Pattern . 7

6 Behavioral Patterns 7
6.1 State Pattern . 7
6.2 Strategy Pattern . 8
6.3 Template Method Pattern . 8

7 TBD Conclusions 9

List of Figures

1 Output of the cloc tool for the Jackson Core project at revision jackson-core-3.13.4. 2
3 Quantitative summary of Pattern4J complete analysis output for the Jackson core

project. 3
2 Results of the statistical analysis on the effectiveness of the Pattern4J tool as a

class-by-class table (Figure 2a) and as a confusion matrix (Figure 2b). 10

Listings
1 The sym.Name1 class. 3
2 Display the number of commits on a file and sort it by the number of commits. . . . 6
3 Command of Listing 2 executed on util.JsonParserDelegate class 6
4 Command of Listing 2 executed on util.JsonGeneratorDelegate class 6

5 Template method void close() and step methods void closeInput() and void releaseBuffers()
in base.ParserBase. 8

ii

1 Project selection process

We have to choose a Java-based project on GitHub that follows the following requirements:

• 100 or more stars;
• 100 or more forks;
• 10 or more open issues;
• 50.000 or more lines of code.

Additionally, we added some less strict constraints that we thought would lead to a more significant
and influential analysis:

• There must be evidence that the project follows business-oriented conventions. This excludes
amateur or personal projects that might have fewer design pattern applications due to their
nature.

• Repository data, documentation, and comments must be written in English. Many reposi-
tories that are at the top of the search results provided by the hard requirements are not in
English, and this drastically hampers our ability to understand the code;

• The artifact the project produces must not rely on external components and have a stream-
lined build process, with all code stored in a single Maven/Gradle module. This improves
our ability to tinker with the project more quickly and the pattern detection process, which
requires all .class files related to the project to be stored in a single directory tree.

Additionally, instead of querying GitHub directly for projects, we decided to see if libraries we
knew already in our Java development career would match the hard and soft requirements we set
for ourselves.
Therefore, we considered the following GitHub repositories:

vavr-io/vavr a Java library for functional programming, was discarded as the project is less than
20.000 lines of code and does not meet the rigid requirements;

bitcoin4j/bitcoin4j a Java implementation of the bitcoin protocol, discarded as the project is
distributed in several subprojects, and therefore the build process is nontrivial;

FasterXML/jackson-core is the core ”module“ of a Java JSON serialization and deserialization
library. We chose this project because it meets the selection criteria. It does not rely on
external components for its execution. Finally, the project structure uses a single Maven
module for its sources and is thus easy to analyze.

1.1 The Jackson Core Project

As mentioned, Jackson is a library that offers serialization and deserialization capabilities in JSON
format. It is highly extensible and customizable through a robust but flexible API. The library
is divided into what the Jackson developers call “modules,” i.e., plug-ins that can augment the
serialization and deserialization process. Some modules, like the jackson-dataformat-xml module,
target different encoding languages like XML.
The chosen repository contains only the core module of Jackson. The core module implements the
necessary library abstractions and interfaces to allow other modules to be plugged-in. Additionally,
the core module implements the tokenizer and low-level abstractions to work with the JSON format.
We will refer to this module as “Jackson” or “Jackson Core” interchangeably throughout this report.
We choose to analyze version 2.13.4 of the module (i.e. the code under the git tag jackson-core-
2.13.4) because it is the latest stable version available at the time of writing.
After verifying that the project meets the hard requirements related to GitHub (more than 2000

1

stars, more than 600 forks, 35 open issues1), we ensured that the project had enough lines of code
by using the cloc tool, which provided the following output shown in Figure 1. By looking at the
results we can finally assert that the project contains 58.787 non-blank lines of Java code and this
satisfies all the requirements.

Language Files Blank Comment Code
HTML 4,846 18,473 235,544 1,997,020
Java 285 8,532 20,004 48,783
CSS 3 18 69 990
Logos 2 260 212 605
Bourne Shell 3 35 62 223
XML 7 5 1 179
DOS Batch 1 35 0 153
Markdown 3 58 0 125
Maven 1 13 23 112
YAML 3 1 5 71
JavaScript 1 1 0 29
JSON 1 0 0 10
Properties 2 0 16 5
Total 5,158 27,431 255,936 2,048,305

Figure 1: Output of the cloc tool for the Jackson Core project at revision jackson-core-3.13.4.

2 Analysis Implementation

The analysis is performed using the Pattern4J 2 developed at Concordia University. This program
attempts to detect traditional design patterns by scanning the bytecode (i.e. the .class files)
of a given project and by checking several heuristics. Due to the unceirtanty of this process we
double-check each instance of a pattern found to use our own judgement and detect possible false
positives.
Since the tool needs compiled .class files to perform the analysis, and since jackson-core is a standard
Maven project, we compile the sources using the command mvn clean compile. The pom.xml of
the library specifies Java 1.6 as a build target, which is not supported by JDK 17 or above. We
used JDK 11 instead, as it is the most recent LTS version of the JDK to still support this target.
An XML dump of the Pattern4J analysis results is included in the submission as the file analy-
sis.xml.
In the following sections each detection of the Pattern4J tool is reviewed to characterize if it
is indeed not a false positive and if the design pattern is varied in any way in its application.
For the sake of brevity, when referring to a class by its fully-qualified domain name the prefix
com.fasterxml.jackson.core is omitted as all classes in the Jackson core project reside in this package
or in a sub-package of this package.

3 Pattern4J Accuracy and Quantitative Analysis

As it would be very hard to check each class in the Jackson project for design patterns manually
to get a true number of false positives and false negatives, we opt for a more statistical approach.

1as of 2022-10-19 (ISO 8601 date)
2https://users.encs.concordia.ca/˜nikolaos/pattern_detection.html

2

https://users.encs.concordia.ca/~nikolaos/pattern_detection.html

We select 20 classes at random from the project and we review the reported results for this subset.
The classes were selected from the target/classes directory generated by Maven using the following
command:

find . -name ’*.class’ | shuf -n 20 | sed ’s#\.class##;s#/#.#’

The selected classes and the analysis results for both Pattern4J and our manual inspection are
shown in Figure 2. Using those results, we can say that Pattern4J shows a false positive rate3 of
53.8%, a false negative rate of 11.1%, and an accuracy of 75.0%.
Moreover, based on Pattern4J complete analysis output, we are able to report the overall findings,
shown in Figure 3.

Design Pattern Pattern Applications Classes Covered
Factory Method 2 2
Singleton 13 13
Adapter 8 6
Decorator 2 2
State 5 3
Bridge 1 1
Template Method 7 7
Total 38 34

Figure 3: Quantitative summary of Pattern4J complete analysis output for the Jackson core
project.

4 Structural Patterns

4.1 Singleton Pattern

Pattern4J found a lot of instances of the singleton pattern, namely 13. However, some discussion
is required to understand the ways the Jackson core project applies this pattern, as the instances
found are sometimes wildly different from the standard application or outright false positives.

public final class Name1 extends Name {
private final static Name1 EMPTY = new Name1("", 0, 0);
private final int q;

Name1(String name, int hash, int quad) {
super(name, hash);
q = quad;

}

public static Name1 getEmptyName() {
return EMPTY;

}

@Override
public boolean equals(int quad) {

return (quad == q);
}

3https://en.wikipedia.org/wiki/False_positive_rate

3

https://en.wikipedia.org/wiki/False_positive_rate

@Override
public boolean equals(int quad1, int quad2) {

return (quad1 == q) && (quad2 == 0);
}

@Override
public boolean equals(int q1, int q2, int q3) {

return false;
}

@Override
public boolean equals(int[] quads, int qlen) {

return (qlen == 1 && quads[0] == q);
}

}

Listing 1: The sym.Name1 class.

For example, sym.Name1 (whose sources are in Listing 1) has a package-private constructor and
a public static final instance of itself. This is enough for Pattern4J to flag the class as a singleton,
as its constructor is never called in Jackson core other than for initializing the aforementioned
field. However, by reading the documentation it is clear that the class is meant to be instantiated
multiple times. Indeed, its purpose is to box and represent JSON string literals shorter than 4
bytes, implying the class is meant to be initialized by clients of the core Jackson module.
Several less-than-obvious results like this one are reported by the tool, namely:

sym.Name1, JsonLocation, DefaultIndenter, util.DefaultPrettyPrinter$FixedSpaceIndenter are
not singletons and thus false positives. All these classes were detected because of “default”
instances they include in themselves as static final fields and because their constructor, even
if public, is never used in Jackson core itself. However, by checking the documentation all
these classes are meant to be extended and instantiated in other Jackson modules;

JsonPointer, filter.TokenFilter are as described above, however having protected constructors;
JsonpCharacterEscapes, util.DefaultPrettyPrinter$NopIndenter, Version may be considered vari-

ations of the singleton pattern that however include a public constructor that is never called
in the module code, but that may be called in tests. Given the public constructors, these
classes are hardly solid singleton implementations. However, we gave the benefit of the doubt
to Jackson developers as the use of the constructors in test code may hint to a purposefully
open design to allow for testability;

io.JsonStringEncoder is as described above, however the class is declared as final;
util.InternCache, io.CharTypes$AltEscapes are both rather standard singleton pattern applica-

tions, however implemented with eager (non-lazy) initialization (i.e. storing the instance in a
public static final field);

io.ContentReference is as described above, however having a protected constructor instead of a
private one.

4.2 Abstract Factory Pattern

Pattern4J detects only two instances of the abstract factory pattern:

TokenStreamFactory which indeed is a factory for JsonParser and JsonGenerator is a factory
for JsonParser and JsonGenerator objects, although two overloaded factory methods exist on
this class (one for each class) catering to a different combination of arguments. A concrete
implementation of this factory is included in the form of the JsonFactory class, although

4

other modules may add additional implementations to cater to different encodings (like the
jackson-dataformat-xml module for XML);

TSFBuilder which is also a factory for concrete implementations of TokenStreamFactory allows
slight changes in the serialization and deserialization rules (e.g., changing the quote character
used in JSON keys from ” to ’). Like TokenStreamFactory, this class is only implemented by
one class, JsonFactoryBuilder, within this module’s scope. Moreover, as mentioned previously,
this abstract factory will likely be extended by concrete implementations in other Jackson
modules.

4.3 Builder Pattern

The builder pattern does not seem to be analyzed by Pattern4J, as the analysis output does not
mention the pattern, even to report that no instances of it have been found (as is the case with other
patterns, e.g., the observer pattern). A manual search in the source code produced the following
results:

TSFBuilder is also a builder other than an abstract factory. As mentioned previously, this class
allows slightly altering the serialization and deserialization rules used to build outputting
JsonFactory objects. Each rule is represented by an object or enum instance implementing
the util.JacksonFeature interface. TSFBuilder then provides several overloaded methods to
enable and disable features represented by the interface. Enabled features are stored in
several bitmask-protected int fields, which are then directly accessed by the constructor of
the TokenStreamFactory concrete implementation to build;

https://
youtu.be/
72b2nH-kdbU

JsonFactoryBuilder is a concrete factory implementation of TSFBuilder that builds JsonFac-
tory instances;

util.ByteArrayBuilder provides facilities to build byte[] objects of varying length, akin to String-
Builder building String objects. This is not a strict implementation of the builder pattern
per se (as Java arrays do not have a “real” constructor), but it is nevertheless included
since the features it exposes (namely dynamic sizing while building) are decoupled by the
underlying (fixed-size) array representation.

5 Creational Patterns

5.1 Adapter Pattern

Pattern4J found many instances of the adapter pattern, however all but one were shown to be false
positives by checking the documentation and the code using each alleged adaptee. The matches
found are reported and commented below. Matches are shown in the [Adapter]← [Adaptee] format.

JsonFactory ← { sym.ByteQuadsCanonicalizer, io.InputDecorator } false positives, by reading
the documentation it is clear the classes have different purposes and JsonFactory is merely
using the other classes’ functionality through composition;

base.ParserBase ← json.JsonReadContext false positive, json.JsonReadContext is instanti-
ated several times in base.ParserBase by mutating the container field with the new in-
stances;

base.ParserBase ← json.JsonWriteContext false positive, like above;
{ util.DefaultPrettyPrinter, util.MinimalPrettyPrinter } ← util.Separators false positives, another

example of instances used through composition;
io.SerializedString ← io.JsonStringEncoder indeed an adapter pattern application, although the

adaptee backing field is private static final. io.SerializedString is a class that wraps a
String and allows it to be encoded using the io.JsonStringEncoder static instance, storing

5

https://youtu.be/72b2nH-kdbU
https://youtu.be/72b2nH-kdbU
https://youtu.be/72b2nH-kdbU

the result and re-using it in case of multiple serialization request (a tecnique similar to mem-
oization). Therefore, the main purpose of this adapter is not to adapt against any interface,
but to wrap the functionality of the adaptee and store its results for re-use;

util.DefaultPrettyPrinter ← util.DefaultPrettyPrinter$Indenter (2 fields) false positives, both en-
closed fields are simply used in a composition relationship.

5.2 Decorator Pattern

Decorator pattern lets you dynamically change the behaviour of an object at run time by wrap-
ping them in an object of a decorator class. Pattern4J found two instances of the decorator
patter, however we are probably in a case of ambiguity because in the documentation of the
util.JsonParserDelegate is stated that the patter used is a delegation pattern.

/**
* Helper class that implements
* delegation pattern
* for {@link JsonParser},
* to allow for simple overridability of basic parsing functionality.
* The idea is that any functionality to be modified can be simply
* overridden; and anything else will be delegated by default.
*/

The decorator patter is similar to the delegation patter and the delegation patter is similar to the
proxy patter, in-fact the delegation patter is also known as ”proxy chains“. We have a mismatch
in this case because the decorato pattern uses a lot the delegation pattern to accomplish its task,
so thats why we have a misclassification signalling the decorator pattern and not the proxy patter.

util.JsonParserDelegate is clearly a false positive because the developer stated explicitly the design
patter used for the class. This class extends the JsonParser and fully implements the
delegation patter.

util.JsonGeneratorDelegate there is no clear statement by the developer if the used designed
pattern is different from the one detected by the tool, but we can make an assumption by
looking on the authors contribution to the file.

git shortlog -n -s -- filename

Listing 2: Display the number of commits on a file and sort it by the number of commits.

Using the command presente in Listing 2 we can see the number of authors of a single
file and the result is sorted by the number of commits. By running the command on
util.JsonParserDelegate and util.JsonGeneratorDelegate we can clearly see that the
top contributor to the file is the same for both the classes, the out-put of the command are
presented for the classes in Listing 3 and Listing 4.

git shortlog -n -s -- JsonParserDelegate.java
33 Tatu Saloranta
3 Tatu
1 Andrey Somov
1 LokeshN

Listing 3: Command of Listing 2 executed on util.JsonParserDelegate class

git shortlog -n -s -- JsonGeneratorDelegate.java
38 Tatu Saloranta

6

2 Cowtowncoder
1 Andrey Somov
1 Logan Widick
1 Martin Steiger
1 Oleksandr Poslavskyi
1 Q.P.Liu
1 Volkan Yazıcı

Listing 4: Command of Listing 2 executed on util.JsonGeneratorDelegate class

Is more an empirical assumption, we can do a deeper analysis looking at the statistics of
modified lines, but in general the structure of the util.JsonGeneratorDelegate is very
similar to the one in util.JsonParserDelegate, so is more probable that is a false positive.
This class extend the JsonGenerator class and it is implementing the delegate patter with a
modification. In the constructor of the class we have a boolean parameter delegateCopyMeth-
ods, it is used in writeObject, writeTree, copyCurrentEvent, copyCurrentStructure
methods to signal if delegate the function call to the delegator or to the super class.

5.3 Bridge Pattern

Pattern4J found one instance of the bridge pattern. The bridge pattern emphasises composition
rather than inheritance. Implementation details are moved from one hierarchy to another with
separate hierarchies of objects. Looking on the context of the library that is intended to be used
as a core for a JSON parser and by looking at the class implemented it make even more sense.
The class detected is json.JsonGeneratorImpl and the class used is io.CharacterEscapes.
The io.CharacterEscapes class define the escape character used in the file and is particularly
relevant to have this abstraction because there are different standards for string escaping on different
systems. For example on unix systems the escape sequence is “\n”, where on Microsoft operating
systems the escape sequence is “\r\n” and on IBM mainframe systems the escape sequence is
“\025”.

6 Behavioral Patterns

6.1 State Pattern

Among the design patterns Pattern4J detects, the state pattern is detected in 5 classes. The state
pattern is a variation of the strategy pattern where the concrete strategy used by the matching
context is determined by the state of a finite state machine the context class implements. In other
words, the state pattern chooses the concrete strategy to use through the state of the context.
By analyzing the Pattern4J results and the code, we can say that all the instances of the state
pattern the tool finds are false positives. Namely:

util.DefaultPrettyPrinter inputDecorator and outputDecorator are fields flagged as states, thus
flagging the class as a state pattern instance. However, no “state” akin to a finite-state ma-
chine is maintained by the class to determine which implementation of these fields to invoke.
What is detected are more likely lightweight implementations of the strategy pattern, since
these fields can be mutated through matching getters and setters. Additionally, the docu-
mentation of each of the matching ...Decorator field types (namely interfaces) states that
implementors are meant to be algorithms to pre-process input before the formatting process
(a feature labeled as “decorator” w.r.t. the library, not to be confused with the decorator
pattern);

util.DefaultPrettyPrinter objectIndenter and arrayIndenter are false positives too, and are likely

7

strategy patterns too for the reasons described above.
util.DefaultPrettyPrinter rootValueSeparator is flagged as a state field too, however the field is

simply a boxed String-like immutable data structure (i.e. SerializableString) that is swapped
during the pretty-printer parsing logic;

json.WriterBasedJsonGenerator currentEscape is a false positive for the same reasons described
above.

6.2 Strategy Pattern

Pattern4J detects no instance of the strategy pattern in Jackson, however the previous section
regarding the state pattern referenced some false positives that were indeed applications of this
pattern. Due to the flexibility of Jackson, there are many more instances of the strategy pattern
to configure and customize the serialization and deserialization pipeline in several stages.

6.3 Template Method Pattern

Due to the extendibility of Jackson, it is of no surprise that the template method pattern is used ex-
tensively to create a class hierarchy that provides rich interfaces while maintaining behavioural flex-
ibility. Pattern4J correctly detects several instances of the pattern, namely JsonStreamContext,
JsonGenerator, type.ResolvedType, JsonParser, base.ParserBase, base.GeneratorBase,
base.ParserMinimalBase. All these classes implement several concrete public methods throwgh
the use of protected abstract methods. Although the concrete (i.e. the template) methods are
usually not vary complex (as the pattern example shown in class), they still follow the princi-
ples of the template method pattern. We show as an example some template methods found in
base.ParserBase:

@Override public void close() throws IOException {
if (!_closed) {

// 19-Jan-2018, tatu: as per [core#440] need to ensure no more data
// assumed available
_inputPtr = Math.max(_inputPtr, _inputEnd);
_closed = true;
try {

_closeInput();
} finally {

// as per [JACKSON-324], do in finally block
// Also, internal buffer(s) can now be released as well
_releaseBuffers();

}
}

}

protected abstract void _closeInput() throws IOException;

protected void _releaseBuffers() throws IOException {
/* implementation omitted */

}

Listing 5: Template method void close() and step methods void closeInput() and void
releaseBuffers() in base.ParserBase.

Here the pattern is slightly modified by providing a default implementation of void releaseBuffers().
In this case, child classes occasionally override the method with a body first calling super() and
then adding additional buffer release code after.

8

7 TBD Conclusions

TBD
a brief (possibly speculative) discussion about whether your findings are likely to be applicable to
other projects or, conversely, they are probably unique to the project you selected – and why you
think this to be the case.

9

Class True
positives

False
positives

False
negatives

True
negatives

Notes

util.DefaultPrettyPrinter$Indenter 1 state and adapter, false positives
ObjectCodec 1
type.WritableTypeId 1
util.DefaultPrettyPrinter$NopIndenter 1 variation of singleton, true positive
json.PackageVersion 1 variation of singleton, false negative
io.UTF32Reader 1
io.NumberInput 1
json.JsonReadFeature 1
io.SerializedString 1 variation of singleton, true positive
type.TypeReference 1
JsonPointer 1 singleton, false positive
json.UTF8DataInputJsonParser 1
format.InputAccessor$Std 1
JsonStreamContext 1 template method (barely), true positive
filter.TokenFilter 0.5 0.5 singleton, false positive; strategy, false

negative
util.VersionUtil 1
json.UTF8JsonGenerator 1
JsonParser$Feature 1
exc.StreamReadException 1
util.JsonGeneratorDelegate 1 decorator, false positive (a “delegation”

instead, pattern not supported by Pat-
tern4J)

Total 3 3.5 1.5 12
Percentage 15.0% 17.5% 7.5% 60.0%

(a) Table of classes analyzed manually against the Pattern4J tool results. Units are classes, the value 0.5
represents a pattern inside a class with two patterns.

Has
pa

tte
rn

No pa
tte

rn

Has pattern

No pattern

3 1.5

3.5 12

Pattern4J

M
an

ua
ld

et
ec

tio
n

2

4

6

8

10

12

(b) Confusion matrix comparing the Pattern4J detection results with our manual interpretation of the
classes. Units are classes, the value 0.5 represents a pattern inside a class with two patterns.

Figure 2: Results of the statistical analysis on the effectiveness of the Pattern4J tool as a class-by-
class table (Figure 2a) and as a confusion matrix (Figure 2b).

10

	Project selection process
	The Jackson Core Project

	Analysis Implementation
	Pattern4J Accuracy and Quantitative Analysis
	Structural Patterns
	Singleton Pattern
	Abstract Factory Pattern
	Builder Pattern

	Creational Patterns
	Adapter Pattern
	Decorator Pattern
	Bridge Pattern

	Behavioral Patterns
	State Pattern
	Strategy Pattern
	Template Method Pattern

	TBD Conclusions

