
Assginment 1 – Software Design and
Modelling

Volodymyr Karpenko Claudio Maggioni

October 19, 2022

1 Project selection process
We need to find a project that is a single unit in terms of compilation modules1 self
contained and with as little external dependencies as possible to ease the analysis project.
Additionally, it would be nice if we choose a project that we already know as library
clients.

1.1 Projects Considered
We considered the following GitHub repositories:

vavr-io/vavr a Java library for functional programming, discarded as the project is less
than 20K LOC and doesn’t meet the selection criteria;

bitcoin4j/bitcoin4j a Java implementation of the bitcoin protocol, discarded as the project
is distributed in several subprojects;

FasterXML/jackson-core a Java JSON serialization and deserialization library. We
chose this library because it meets the selection criteria, it doesn’t rely on external
components for its execution, and its project structure uses a single Maven module
for its sources and thus easy to analyze.

1.2 The Jackson Core Library
As already mentioned, Jackson is a library that offers serialization and deseralization
capabilities in JSON format. The library is highly extensible and customizable through
a robust but flexible API and module suite that allows to change the serialization and
deserialization rules, or in the case of the jackson-dataformat-xml module, to allow to
target XML instead of JSON.
The chosen repository contains only the core module of Jackson. The core module im-
plements the necessary library abstractions and interfaces to allow other modules to be
plugged-in. Additionally, the core module implements the tokenizer and low-level abstrac-
tions to work with the JSON format.

1A problem for Pattern4J as compiled .class files are distributed across several directories and would
have to be merged manually for analyzing them

1

We chose to analyze version 2.13.4 of the module (corresponding to the code under the
git tag jackson-core-2.13.4) because it is the latest stable version available at the time
of writing.

2 Analysis Implementation
We use Pattern4 as a pattern detection tool. This tool needs compiled .class files in
order to perform analysis. Therefore, as jackson-core is a standard Maven project, we
compile the sources using the command mvn clean compile. The pom.xml of the library
specifies Java 1.6 as a compilation target, which is not supported by JDK 17 or above.
We used JDK 11 instead, as it is the previous LTS version.
An XML dump of the Pattern4j analysis results are included in the submission as the file
analysis.xml.

3 Structural Patterns
3.1 Singleton Pattern
Lots of false positives for the Singleton pattern. Example, com.fasterxml.jackson.core.sym.Name1
has a package private constructor and a public static final instance of it, but reading the
documentation the class represents (short) JSON string literals and therefore is clearly
initialized by client code.
(com.fasterxml.jackson.core omitted for brevity)

sym.Name1, JsonLocation, DefaultIndenter, util.DefaultPrettyPrinter$FixedSpaceIndenter
not a singleton (detected cause of ”convenient” default instance given as static final
field), the constructor is not used but the class is extensible

JsonPointer, filter.TokenFilter like above, but constructors are protected

JsonpCharacterEscapes, util.DefaultPrettyPrinter$NopIndenter, Version a singleton
but with a public constructor that is never called in the module code, may be called
in tests

io.JsonStringEncoder like above, but the class is final

util.InternCache, io.CharTypes$AltEscapes actual singleton, thread-unsafe initializa-
tion

io.ContentReference like above, but constructor is protected

3.2 Abstract Factory Pattern
Pattern4 detects only two instances of the abstract factory pattern:

TokenStreamFactory which indeed is a factory for JsonParser and JsonGenerator
objects, although two overloaded factory methods exist on this class (one for each
class) catering for different combination of arguments. A concrete implementation
of this factory is included in the form of the JsonFactory class, although other
modules may add additional implementations to cater for different encodings (like
the jackson-dataformat-xml module for XML);

2

https://users.encs.concordia.ca/~nikolaos/pattern_detection.html

TSFBuilder which is also a factory for concrete implementations of TokenStreamFac-
tory to allow slight changes in the serialization and deserialization rules (e.g. chang-
ing the quote character used in JSON keys from " to ’). Like TokenStreamFac-
tory, this class is only implemented by one class, namely JsonFactoryBuilder,
whitin the scope of this module. And as mentioned previously, this abstract factory
is also likely to be extended by concrete implementations in other Jackson modules.

3.3 Builder Pattern
The builder pattern does not seem to be analyzed by Pattern4, as the analysis output
does not mention the pattern, even just to report that no instances of it have been found
(as it is the case with other patterns, e.g. the observer pattern). A manual search in the
source code produced the following results:

TSFBuilder is also a builder other than an abstract factory. As mentioned previously,
this class allows to alter slightly the serialization and deserialization rules used to
build outputtting JsonFactory objects. Each rule is represented by an object or
enum instance implementing the util.JacksonFeature interface. TSFBuilder then
provides several overloaded methods to enable and disable features represented by
the interface. Enabled features are stored in several bitmask protected int fields,
which are then directly accessed by the constructor of the TokenStreamFactory
concrete implementation to build;

JsonFactoryBuilder an concrete factory implementation of TSFBuilder that builds
JsonFactory instances;

util.ByteArrayBuilder provides facilities to build byte[] objects of varying length, akin
to StringBuilder building String objects. This is not a strict implementation of
the builder pattern per se (as Java arrays do not have a “real” constructor), but it
is nevertheless included since the features it exposes (namely dynamic sizing while
building) are decoupled by the underlying (fixed-size) array representation.

4 Creational Patterns
4.1 Adapter Pattern
TBD

4.2 Bridge Pattern
TBD

4.3 Composite Pattern
TBD

4.4 Facade Pattern
TBD

3

4.5 Proxy Pattern
TBD

5 Behavioral Patterns
5.1 Command Pattern
TBD

5.2 Observer Pattern
TBD

5.3 Strategy Pattern
TBD

5.4 Template Method Pattern
Due to the extendibility of Jackson, it is of no surprise that the template method pat-
tern is used extensively to create a class hierarchy that provides rich interfaces while
maintaining behavioural flexibility. Pattern4 correctly detects several instances of the
pattern, namely JsonStreamContext, JsonGenerator, type.ResolvedType, Json-
Parser, base.ParserBase, base.GeneratorBase, base.ParserMinimalBase. All
these classes implement several concrete public methods throwgh the use of protected
abstract methods. Although the concrete (i.e. the template) methods are usually not
vary complex (as the pattern example shown in class), they still follow the principles of
the template method pattern. We show as an example some template methods found in
base.ParserBase:

@Override public void close() throws IOException {
if (!_closed) {

// 19-Jan-2018, tatu: as per [core#440] need to ensure no more data
// assumed available
_inputPtr = Math.max(_inputPtr, _inputEnd);
_closed = true;
try {

_closeInput();
} finally {

// as per [JACKSON-324], do in finally block
// Also, internal buffer(s) can now be released as well
_releaseBuffers();

}
}

}

protected abstract void _closeInput() throws IOException;

protected void _releaseBuffers() throws IOException {

4

/* implementation omitted */
}

Listing 1: Template method void close() and step methods void closeInput() and
void releaseBuffers() in base.ParserBase.

Here the pattern is slightly modified by providing a default implementation of void
releaseBuffers(). In this case, child classes occasionally override the method with

a body first calling super() and then adding additional buffer release code after.

5.5 Visitor Pattern
TBD

5

	Project selection process
	Projects Considered
	The Jackson Core Library

	Analysis Implementation
	Structural Patterns
	Singleton Pattern
	Abstract Factory Pattern
	Builder Pattern

	Creational Patterns
	Adapter Pattern
	Bridge Pattern
	Composite Pattern
	Facade Pattern
	Proxy Pattern

	Behavioral Patterns
	Command Pattern
	Observer Pattern
	Strategy Pattern
	Template Method Pattern
	Visitor Pattern

