
Assginment 1 – Software Design and Modelling
Volodymyr Karpenko Claudio Maggioni

October 19, 2022

Contents
1 Project selection process 1

1.1 The Jackson Core Project . 1

2 TO REWRITE Analysis Implementation 2

3 Structural Patterns 2
3.1 TO REWRITE Singleton Pattern . 2
3.2 Abstract Factory Pattern . 2
3.3 Builder Pattern . 3

4 Creational Patterns 3
4.1 Adapter Pattern . 3
4.2 Decorator Pattern . 3
4.3 Bridge Pattern . 3
4.4 Composite Pattern . 3
4.5 Facade Pattern . 3
4.6 Proxy Pattern . 3

5 Behavioral Patterns 3
5.1 Command Pattern . 3
5.2 Observer Pattern . 4
5.3 State Pattern . 4
5.4 Strategy Pattern . 4
5.5 Template Method Pattern . 4
5.6 Visitor Pattern . 5

Listings
1 Template method void close() and step methods void closeInput() and void releaseBuffers()

in base.ParserBase. 4

1 Project selection process
We have to choose a Java-based project on GitHub that follows the following requirements:

• 100 or greater number of stars;
• 100 or greater number of forks;
• 10 or more open issues;
• 50.000 or more lines of code.

Additionally, we personally added some (less strict) constraints that we thought would lead to a more
significant and effective analysis:

• There must be evidence that the project follows business-oriented conventions. This excludes amateur
or personal projects that due to their nature might have less design pattern applications.

• Repository data, documentation and comments must be written in the english language. Many repos-
itories that are at the top of the search results provided by the hard requirements are not in english
and this drastically hampers our ability to understand the code;

• The artifact the project produces must not rely on external components and have a streamlined build
process, with all code stored in a single Maven/Gradle module. This improves both our ability to
tinker with the project more easily and the pattern detection process, which requires all .class files
related to the project to be stored in a single directory tree.

Additionally, instead of querying GitHub directly for projects we decided to see if libraries we knew already
in our Java development career would match both the hard and soft requirements we set for ourselves.
Therefore, we considered the following GitHub repositories:
vavr-io/vavr a Java library for functional programming, discarded as the project is less than 20.000 lines of

code and does not meet the hard requirements;
bitcoin4j/bitcoin4j a Java implementation of the bitcoin protocol, discarded as the project is distributed in

several subprojects and therefore the build process is nontrivial;
FasterXML/jackson-core the core “module” of a Java JSON serialization and deserialization library. We

chose this project because it meets the selection criteria, it does not rely on external components for
its execution. Finally, the project structure uses a single Maven module for its sources and thus easy
to analyze.

1.1 The Jackson Core Project
As already mentioned, Jackson is a library that offers serialization and deseralization capabilities in JSON
format. It is highly extensible and customizable through a robust but flexible API. The library is divided
in what the Jackson developers call “modules”, i.e. plug-ins that can augment the serialization and deserial-
ization process. Some modules, like jackson-dataformat-xml module, even allow to target different encoding
languages like XML.
The chosen repository contains only the core module of Jackson. The core module implements the necessary
library abstractions and interfaces to allow other modules to be plugged-in. Additionally, the core module
implements the tokenizer and low-level abstractions to work with the JSON format. We will refer to this
module as “Jackson” or “Jackson Core” interchangeably throughout this report.
We choose to analyze version 2.13.4 of the module (i.e. the code under the git tag jackson-core-2.13.4)
because it is the latest stable version available at the time of writing.
After verifying that the project meets the hard requirements related to GitHub (more than 2000 stars, more
than 600 forks, 35 open issues1), we ensured that the project had enough lines of code by using the cloc tool,
which provided the following output shown in Figure 1. By looking at the results we can finally assert that
the project contains 58.787 lines of Java code and this satisfies all the requirements.

1as of 2022-10-19

1

Language Files Blank Comment Code
HTML 4846 18473 235544 1997020
Java 285 8532 20004 48783
CSS 3 18 69 990
Logos 2 260 212 605
Bourne Shell 3 35 62 223
XML 7 5 1 179
DOS Batch 1 35 0 153
Markdown 3 58 0 125
Maven 1 13 23 112
YAML 3 1 5 71
JavaScript 1 1 0 29
JSON 1 0 0 10
Properties 2 0 16 5
Total 5158 27431 255936 2048305

Figure 1: Output of the cloc tool for the Jackson Core project at revision jackson-core-3.13.4.

2 TO REWRITE Analysis Implementation
We use Pattern4J as a pattern detection tool. This tool needs compiled .class files in order to perform
analysis. Therefore, as jackson-core is a standard Maven project, we compile the sources using the command
mvn clean compile. The pom.xml of the library specifies Java 1.6 as a build target, which is not supported
by JDK 17 or above. We used JDK 11 instead, as it is the previous LTS version.
An XML dump of the Pattern4j analysis results are included in the submission as the file analysis.xml.

3 Structural Patterns

3.1 TO REWRITE Singleton Pattern
Lots of false positives for the Singleton pattern. Example, com.fasterxml.jackson.core.sym.Name1 has a
package private constructor and a public static final instance of it, but reading the documentation the class
represents (short) JSON string literals and therefore is clearly initialized by client code.
(com.fasterxml.jackson.core omitted for brevity)
sym.Name1, JsonLocation, DefaultIndenter, util.DefaultPrettyPrinter$FixedSpaceIndenter not a single-

ton (detected cause of ”convenient” default instance given as static final field), the constructor is not
used but the class is extensible

JsonPointer, filter.TokenFilter like above, but constructors are protected
JsonpCharacterEscapes, util.DefaultPrettyPrinter$NopIndenter, Version a singleton but with a public

constructor that is never called in the module code, may be called in tests
io.JsonStringEncoder like above, but the class is final
util.InternCache, io.CharTypes$AltEscapes actual singleton, thread-unsafe initialization
io.ContentReference like above, but constructor is protected

3.2 Abstract Factory Pattern
Pattern4J detects only two instances of the abstract factory pattern:
TokenStreamFactory which indeed is a factory for JsonParser and JsonGenerator objects, although two

overloaded factory methods exist on this class (one for each class) catering for different combination
of arguments. A concrete implementation of this factory is included in the form of the JsonFactory
class, although other modules may add additional implementations to cater for different encodings
(like the jackson-dataformat-xml module for XML);

2

https://users.encs.concordia.ca/~nikolaos/pattern_detection.html

TSFBuilder which is also a factory for concrete implementations of TokenStreamFactory to allow slight
changes in the serialization and deserialization rules (e.g. changing the quote character used in JSON
keys from ” to ’). Like TokenStreamFactory, this class is only implemented by one class, namely
JsonFactoryBuilder, whitin the scope of this module. And as mentioned previously, this abstract
factory is also likely to be extended by concrete implementations in other Jackson modules.

3.3 Builder Pattern
The builder pattern does not seem to be analyzed by Pattern4J, as the analysis output does not mention
the pattern, even just to report that no instances of it have been found (as it is the case with other patterns,
e.g. the observer pattern). A manual search in the source code produced the following results:
TSFBuilder is also a builder other than an abstract factory. As mentioned previously, this class allows to

alter slightly the serialization and deserialization rules used to build outputtting JsonFactory objects.
Each rule is represented by an object or enum instance implementing the util.JacksonFeature inter-
face. TSFBuilder then provides several overloaded methods to enable and disable features represented
by the interface. Enabled features are stored in several bitmask protected int fields, which are then
directly accessed by the constructor of the TokenStreamFactory concrete implementation to build;

https://youtu.
be/72b2nH-kdbUJsonFactoryBuilder an concrete factory implementation of TSFBuilder that builds JsonFactory in-

stances;
util.ByteArrayBuilder provides facilities to build byte[] objects of varying length, akin to StringBuilder

building String objects. This is not a strict implementation of the builder pattern per se (as Java arrays
do not have a “real” constructor), but it is nevertheless included since the features it exposes (namely
dynamic sizing while building) are decoupled by the underlying (fixed-size) array representation.

4 Creational Patterns

4.1 Adapter Pattern
TBD

4.2 Decorator Pattern
Only in Pattern4j

4.3 Bridge Pattern
TBD

4.4 Composite Pattern
None found

4.5 Facade Pattern
TBD – Pattern4J does not detect this pattern

4.6 Proxy Pattern
None found

5 Behavioral Patterns

5.1 Command Pattern
None found

3

https://youtu.be/72b2nH-kdbU
https://youtu.be/72b2nH-kdbU

5.2 Observer Pattern
None found

5.3 State Pattern
Among the design patterns Pattern4J detects, the state pattern is detected in 5 classes. The state pattern is
a variation of the strategy pattern where the concrete strategy used by the matching context is determined
by the state of a finite state machine the context class implements. In other words, the state pattern chooses
the concrete strategy to use through the state of the context.
By analyzing the Pattern4J results and the code, we can say that all the instances of the state pattern the
tool finds are false positives. Namely:
util.DefaultPrettyPrinter inputDecorator and outputDecorator are fields flagged as states, thus flagging

the class as a state pattern instance. However, no “state” akin to a finite-state machine is maintained
by the class to determine which implementation of these fields to invoke. What is detected are more
likely lightweight implementations of the strategy pattern, since these fields can be mutated through
matching getters and setters. Additionally, the documentation of each of the matching ...Decorator
field types (namely interfaces) states that implementors are meant to be algorithms to pre-process input
before the formatting process (a feature labeled as “decorator” w.r.t. the library, not to be confused
with the decorator pattern);

util.DefaultPrettyPrinter objectIndenter and arrayIndenter are false positives too, and are likely strat-
egy patterns too for the reasons described above.

util.DefaultPrettyPrinter rootValueSeparator is flagged as a state field too, however the field is simply a
boxed String-like immutable data structure (i.e. SerializableString) that is swapped during the pretty-
printer parsing logic;

json.WriterBasedJsonGenerator currentEscape is a false positive for the same reasons described above.

5.4 Strategy Pattern
Pattern4j detects no instance of the strategy pattern in Jackson, however the previous section regarding
the state pattern referenced some false positives that were indeed applications of this pattern. Due to the
flexibility of Jackson, there are many more instances of the strategy pattern to configure and customize the
serialization and deserialization pipeline in several stages.

5.5 Template Method Pattern
Due to the extendibility of Jackson, it is of no surprise that the template method pattern is used exten-
sively to create a class hierarchy that provides rich interfaces while maintaining behavioural flexibility. Pat-
tern4J correctly detects several instances of the pattern, namely JsonStreamContext, JsonGenerator,
type.ResolvedType, JsonParser, base.ParserBase, base.GeneratorBase, base.ParserMinimalBase.
All these classes implement several concrete public methods throwgh the use of protected abstract methods.
Although the concrete (i.e. the template) methods are usually not vary complex (as the pattern example
shown in class), they still follow the principles of the template method pattern. We show as an example
some template methods found in base.ParserBase:

@Override public void close() throws IOException {
if (!_closed) {

// 19-Jan-2018, tatu: as per [core#440] need to ensure no more data
// assumed available
_inputPtr = Math.max(_inputPtr, _inputEnd);
_closed = true;
try {

_closeInput();
} finally {

// as per [JACKSON-324], do in finally block
// Also, internal buffer(s) can now be released as well
_releaseBuffers();

}
}

4

}

protected abstract void _closeInput() throws IOException;

protected void _releaseBuffers() throws IOException {
/* implementation omitted */

}

Listing 1: Template method void close() and step methods void closeInput() and void releaseBuffers() in
base.ParserBase.

Here the pattern is slightly modified by providing a default implementation of void releaseBuffers(). In
this case, child classes occasionally override the method with a body first calling super() and then adding
additional buffer release code after.

5.6 Visitor Pattern
None found

5

	Project selection process
	The Jackson Core Project

	TO REWRITE Analysis Implementation
	Structural Patterns
	TO REWRITE Singleton Pattern
	Abstract Factory Pattern
	Builder Pattern

	Creational Patterns
	Adapter Pattern
	Decorator Pattern
	Bridge Pattern
	Composite Pattern
	Facade Pattern
	Proxy Pattern

	Behavioral Patterns
	Command Pattern
	Observer Pattern
	State Pattern
	Strategy Pattern
	Template Method Pattern
	Visitor Pattern

