Assginment 2 — Software Design and Modelling

Claudio Maggioni Christian Squadrito
November 9, 2022

Contents

1 Project selection process

This project focuses on evaluating the design of an open source project by using automated flaw-detection
tools. We have to choose a Java-based project on GitHub that follows the following requirements:

e 100 or more stars;
e 100 or more forks;
e 10 or more open issues;

e 100,000 or more lines of code.
Additionally, we added some less strict constraints that we thought would lead to a more significant analysis:

e Repository data, documentation, and comments must be written in English. Choosing a project using
another language would drastically hamper our ability to understand the code, and thus our ability to
detect potential false positive the ;

e The artifact the project produces must not rely on external components and have a streamlined build
process, with all code stored in a single Maven/Gradle module. This improves our ability to tinker
with the project and simplifies the process of running flaw detection tools, since all the sources are
located under a single directory.

Finally, we decided to query GitHub manually instead of relying on its API. Although more laborious, this
improves the chance of finding a project we are familiar with or that we have used in the past.

Therefore, we choose between the following repositories:

qos-ch/logback a widely used Java logging library backed by a Swiss company. We discard this project as
it has less than 60,000 lines of non-blank lines of Java code;

hibernate/hibernate-orm a de-facto implementation of the Java Persistence API (JPA) and one of the most
widely used Object-Relational Mapping (ORM) libraries in Java. The project satisfies all the “hard”
requirements based on repository statistics. However, the project is over 1 million lines of code and
divided into several Maven modules, and we feed that it would be hard to analyze in detail;

apache/commons-lang a commonly used Java utility library part of the Apache Commons library collection.
This project meets both our “hard” and “soft” selection criteria, having acceptable repository statistics
and a relatively straightforward single-module Maven setup.

1.1 The Apache Commons Lang Project

The Apache Commons family of libraries is an Apache Software Foundation! sponsored collection of Java
libraries designed to complement the standard libraries of Java. The Apache Commons Lang project focuses
on classes that would have fitted in the java.lang package if they were included with Java. According to
GitHub, the project has 179 contributors as of October 30th, 2022.

All the source and test classes are contained within in the package org.apache.commons.lang8 or in a sub-
package of that package. For the sake of brevity, this prefix is omitted from now on when mentioning
packages and classes in the project.

There is a lot of variety in the functionality the library classes provide, from aiding in implementing the
builder pattern (package builder), to alternatives and improvements of concurrent primitives (package con-
current), utility classes for reflection (package reflect) and mutable implementations of boxed primitive types
(package mutable).

We choose to analyze version 3.12.0 of the library (i.e. the code under the git tag rel/commons-lang-3.12.0)
because it is the latest stable version available at the time of writing.

After verifying that the project meets the hard requirements related to GitHub (more than 2,400 stars, more
than 1,400 forks, 222 open issues on the Apache Commons JIRA instance?), we ensured that the project
had enough lines of code by using the cloc tool, which provided the following output shown in Figure ?7.
By looking at the results we can finally assert that the project contains 146419 non-blank lines of Java code
and this satisfies all the requirements.

Ihttps://apache.org/
2https://issues.apache.org/jira/browse/, as of 2022-11-07 (ISO 8601 date)

https://apache.org/
https://issues.apache.org/jira/browse/

Language Files Blank Comment Code

Java 409 15,790 60,363 86,056
HTML 22 1,015 100 13,028
Text 30 1,858 0 12,415
XML 38 434 539 4,819
Maven 1 31 37 940
JavaScript 5 21 78 698
Markdown 3 38 0 202
CSS 4 36 66 140
Velocity Template Language 1 23 31 90
Groovy 1 12 22 81
YAML 3 12 42 55
Bourne Shell 1 0 2 2
Total 518 19,270 61,280 118,526

Figure 1: Output of the cloc tool for the Apache Commons Lang project at tag rel/commons-lang-3.12.0.

2 Analysis

In this section we discuss the techniques and tools we use to find flaws and code smells in the Apache
Commons Lang project. We decide to use two automated flaw detection tools:

PMD an open-source source code analyzer able to find common programming flaws and code smells®. It
supports many languages including Java, and it analyzes the code statically by building an abstract
syntax tree of the source code that can be queried and inspected by a suite of several rules. The rule
definition process is quite simple, as one can define a rule by building an XPath expression matching
against the generated AST, for simple and coincise definition commands.

Sonarqube an open-source platform for ensuring code quality, security and maintainability 4. This tool
decouples the code analysis logic into a separate “scanner” module, which uploads results on a “server”
module implementing a web interface for easily browsing the detection output. Additionally, this tool
is able to gather additional internal quality metrics, such as test coverage and code duplication.

Given the customisable nature of PMD and the high degree of integration of Sonarqube (especially in
the dashboard outputted by the “server” component), we focus on the former for flaw detection and for
implementing custom detection rules, while we use the latter to double-check our analysis and to briefly
broaden the scope of our analysis to the test coverage and code duplication metrics.

Finally, we considered to analyze both the library source code and its test code, as the former is surprisingly
smaller than the other (roughly 25KLOC vs roughly 60KLOC as reported by the cloc tool when ran on the
separate subdirectories).

2.1 Choice of Detection Rules

While using the PMD tool, we decide to enable almost all the predefined rule-sets since they are all useful,
although with varying degrees of relevancy. The rule-sets we deem most important are:
Performance Rules that flag sub-optimal code and being a base library is supposed to run efficiently.

Multi-threading Rules that flag issues when dealing with multiple threads of execution and this library is
involved in offering helper classes for thread (package reflect).

Documentation Rules that are related to code documentation and are useful for having a neat and clean
documented class interfaces in order to be read easily by every Java Developer.

Error Prone Rules to detect constructs that are either broken, extremely confusing or prone to runtime
errors. The same reason to enable this rule is because it’s a base library and it’s the solid fundamental
to build upon other software layers.

Secondly, the less important but necessary to cover as many flaws as possible:

Best Practices Rules which enforce generally accepted best practices.

Shttps://pmd.github.io/
4nttps://www.sonarqube.org/

https://pmd.github.io/
https://www.sonarqube.org/

Code Style Rules which enforce a specific coding style.
Design Rules that help you discover design issues.

Finally, we decide not to enable the Security rule-set as Apache Commons Lang does not implement any
features related to cryptography. Enabling the rule-set would likely cause false positives on code that uses
pseudo-random generators as they are insecure for cryptography, ignoring the fact that such classes specify
in their documentation that they are indeed unsuited for use in these settings.

2.2 Custom Detection Rule

As mentioned, we choose to implement a custom detection rule using the PMD tool. In particular, we choose
to implement the rule using XPath expressions for the aforementioned ease of use benefits.

The rule we decide to implement is based on an observation we make by browsing the Apache Commons
Lang source code. Many class have a name ending in Utils, suggesting they are “utilty classes”, i.e. classes
that offer only static methods in their interfaces that are meant to be used as simple “procedural” functions
(this concept is analogous to “static classes” in C#). Some of these classes, however, expose an interface
that is not completely congruent with how a library user is allowed to use one of such classes.

In particular, we found instances of public constructors and class declarations missing the final modifier,
which make little sense as these classes are not meant to be instanced or extended. Listing ?? shows one of
such flawed implementations.

Listing 1: Interface of class CharSequenceUtils showing a flawed implementation of a utility class.

public class CharSequenceUtils {
public static CharSequence subSequence(final CharSequence cs, final int start)
{/*...%/ }
public static int lastIndexOf (final CharSequence cs, final int searchChar,
int start)
{/%...%/ }
public static int indexO0f(final CharSequence cs, final int searchChar, int start)
{ /*x...%x/ %}
// [further methods omitted for brevity]
public CharSequenceUtils() {3}

Our XPath rule implementation for detecting this flaw, shown in listing ??, can be summarized as follows:

e Firstly, we check if the class ended with the suffix Utils to be sure we are indeed encountering a
potential utility class.

e Secondly, we verify whether a final modifier is missing the class declaration and public constructors
in the class interface. If any of the two is true, we have a violation.

e Finally, we do a last check on the static methods analyzing eventual static modifier left.

Listing 2: PMD XPath expression able to find flawed utility class implementations.

//ClassOrInterfaceDeclaration
[
if (ends-with(@SimpleName,’Utils’))
then QFinal=false() or
ClassOrInterfaceBody/ClassOrInterfaceBodyDeclaration/ConstructorDeclaration[
@Private=false()] or
ClassOrInterfaceBody/ClassOrInterfaceBodyDeclaration[
count (./MethodDeclaration [@Kind="METHOD" and not(@Static=true())]) >0]
else ()

XPath is indeed easy to use and we building this rule is simple, at least compared to writing a piece of Java
code performing the same kind of detection. We are confident this rule can give us insights about the quality
of the Apache Commons Lang project, as many classes declare themselves as utility classes in their contract
and documentation and checking if they are indeed what they claim to be assures that the principle of least
astonishment? is followed in the library’s design.

Shttps://en.wikipedia.org/wiki/Principle_of_least_astonishment

https://en.wikipedia.org/wiki/Principle_of_least_astonishment

2.3 Sonarqube

As Sonarqube is quite a complex yet complete tool, we decide to run it with the default parameters. After
installing the “server” component, we add a new Maven project to it and we use the following Maven
command to run the “scanner” component:

Listing 3: Maven command used to run the “scanner” component. [KEY] to be replaced with the “server”
project key and [TOKEN] to be replaced with the “server” project token.

mvn clean site sonar:sonar -Dsonar.projectKey=Apache-Commons-Lang \
-Dsonar.host.url=[KEY] \
-Dsonar.login=[TOKEN] \
-Dsonar.sourceEncoding=UTF-8 \
-Dsonar.language=java \
-Dsonar. junit.reportsPath=target/surefire-reports \
-Dsonar.surefire.reportsPath=target/surefire-reports \
-Dsonar.verbose=true \
-Dsonar. jacoco.xmlReportPaths=target/site/jacoco/jacoco.xml \
-Dsonar. java.coveragePlugin=jacoco

Using this command the Apache Commons Lang project will build correctly, and the build toolchain will
run the already configured JaCoCo tool to provide to Sonarqube correct test coverage data.

3 PMD Results

This section shows the results we obtain by running the analysis we design in the previous section. Figure
77 shows a summary of the violations found by the PMD tool using the existing rule-set we choose.

Rule Name Violations Rule Name Violations
AvoidReassigningParameters 246 ClassWithOnlyPrivateConstructorsShouldBeFinal 7
UseVarargs 233 MissingBreakInSwitch 7
FieldDeclarationsShouldBeAtStartOfClass 224 CloseResource 6
UncommentedEmptyConstructor 67 SimpleDateFormatNeedsLocale 5
GodClass 56 UseLocaleWithCaseConversions 4
UseUtilityClass 48 SingleMethodSingleton 4
CompareObjectsWithEquals 47 ConfusingTernary 3
ConstructorCallsOverridableMethod 41 SingletonClassReturningNewlInstance 3
UncommentedEmptyMethodBody 35 AbstractClassWithout AbstractMethod 3
FinalFieldCouldBeStatic 26 SwitchStmtsShouldHaveDefault 2
AvoidSynchronized AtMethodLevel 22 UnnecessaryLocalBeforeReturn 2
PreserveStackTrace 17 DataClass 2
AvoidDeeplyNestedIfStmts 13 DefaultLabelNotLastInSwitchStmt 1
InstantiationToGetClass 9 Logiclnversion 1
SimplifyBooleanExpressions 8

Figure 2: Number of violations by rule found by the PMD tool using the existing rule-sets we choose.

We notice that UseVarargs, FieldDeclarationsShouldBeAtStartOfClass and AvoidReassigningParameters are
the rules most violated by the Apache Commons Lang sources.

3.1 AvoidReassigningParameters

This rule is also quite self-documenting: parameters declared in a method signature should not be reassigned
in that method’s body, or in other words, all formal parameter variables should be effectively final.

PMD classifies this rule at “medium-high priority”, and we agree with this high property placement. Even
though avoiding parameter re-assignment is a mere stylistic choice, it is one that brings great benefits. It
considerably improves code readability and it follows the principle of least astonishment, as developers often
assume parameters are not mutated.

We provide an example of poor readability in the form of Apache Commons Lang’s ArrayUtils.shift(. ..)
method, correctly reported by PMD as a violation of this rule and shown in listing ??. Understanding
the algorithm in the while loop is made slightly more confusing by the fact that startIndexInclusive and

endIndexEzclusive are mutated, even if only once and for simple bound checks. The bound check is not as
obvious as it can be, and a developer may think the following code is buggy as it is operating on potentially
unboundedd parameters.

Listing 4: The shift(. ..) method in the ArrayUtils class shows why parameter re-assigment may be confusing
when reading code.

public class ArrayUtils {
// [...]
public static void shift(final long[] array, int startIndexInclusive, int endIndexExclusive,
int offset) {
/7 [...]
if (startIndexInclusive < 0) {
startIndexInclusive = 0;
}
if (endIndexExclusive >= array.length) {
endIndexExclusive = array.length;
}
int n = endIndexExclusive - startIndexInclusive;
// L]
while (n > 1 && offset > 0) {
final int n_offset = n - offset;
if (offset > n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n - n_offset, n_offset);
n = offset;
offset -= n_offset;
} else if (offset < n_offset) {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
startIndexInclusive += offset;
n = n_offset;
} else {
swap(array, startIndexInclusive, startIndexInclusive + n_offset, offset);
break;

3.2 UseVarargs

UseVarargs checks if methods taking arrays as parameters use the varargs syntax in the signature declaration
to support variadic method calls. According to PMD, this warning is “medium-low critical”, i.e. of low
importance. There are indeed benefit in using the varargs syntax, however its absence is not necessarily a
code smell. This could also be due to a deliberate stylistic choice, as some classes are indeed designed to work
specifically on array objects and calls using the variadic syntax would make little sense. One example where
this speculation may apply is the ArraySorter class, whose method signatures matching the rule are shown
in Listing ??. This utility class was clearly designed for sorting arrays, and although a variadic parameter
list is implicitly an array, this is not immediately obvious and might pose problems in the readability of
client code.

Listing 5: Some method signatures of ArraySorter class flagged by PMD’s UseVarargs rule.

public class ArraySorter {
public static byte[] sort(final bytel[] array) { /* ... %/ }
public static char[] sort(final char[] array) { /* ... %/ }
// [other methods for the other primitive types]
public static <T> T[] sort(final T[] array,
final Comparator<? super T> comparator) { /* ... */ }

3.3 FieldDeclarationsShouldBeAtStartOfClass

This rule is fairly self explanatory: field declarations should by place in the beginning of a class declaration.
This is a de-facto stylistic rule widely accepted by the Java community, as placing fields and methods in
separate regions of a class’s source code improves the readability of the overall code. Fields are usually
placed on the top by convention, one that likely has its roots in the UML class diagram notation.

This rule has “medium priority” w.r.t. the PMD output, although we think it is of little concern, as all
violations would be solved by running a code formatter tool over the source code.

3.4 ConstructorCallsOverridableMethod

This rule forbids calls to methods that are not final in constructors of classes that may be overridden. Such
method calls should be avoided since a child class may override the method and act on fields that were not yet
initialized by the parent class constructor, causing a NullPointerException. The PMD tool documentation
further mentions that this “can be difficult to debug”.

PMD assign a “high” priority to these violations, and we agree due to the particularly insidious nature of
bugs that such method calls may cause.

Additionally, we think this decreases the robustness of the class’ interface, in particular of the constructor.
We illustrate as an example the class text.StrBuilder, shown in listing ??. If a child class would override
the append(...) method with a buggy implementation, for example by accessing an index out of bounds of
the buffer field, this will not cause runtime errors on the method itself, but on the public StrBuilder(String)
constructor.

We finally want to mention text.StrBuilder is deprecated in the 3.12.0 version of the Apache Commons Lang,
as all the classes in the texrt package were moved in the Apache Commons Text library. It is possible the
copy of this class in the Text library does not contain this violation anymore.

Listing 6: Constructor and append(...) method of class text.StrBuilder.

public class StrBuilder implements CharSequence, Appendable, Serializable, Builder<String> {
// [...]
protected char[] buffer;
/7 [...]
public StrBuilder(final String str) {
if (str == null) {
buffer = new char[CAPACITY];

} else {
buffer = new char[str.length() + CAPACITY];
append(str) ;
}
}
/7 [...]

public StrBuilder append(final String str) {

if (str == null) {
return appendNull() ;

}

final int strlen = str.length();

if (strlen > 0) {
final int len = length();
ensureCapacity(len + strLen);
str.getChars(0, strLen, buffer, len);
size += strlen;

}

return this;
}
// [...]

3.5 PreserveStackTrace

This rule mandates that when throwing an exception in a catch block the thrown exception should reference
the stack trace of the caught exception. This is usually achieved by making the thrown exception object
reference the caught exception object as a “cause” (e.g. the RuntimeEzception(Throwable cause) constructor
allows this).

PMD classifies this rule with a severity of “medium”, and we agree with the rather severe rating as failing
to follow this rule will likely make debugging affected code harder as part of the stack trace is not reported.
As a violation example, the builder. ReflectionDiff Builder.appendFields(Class< ?>) method does catch but
not correctly report stack traces of IllegalAccessException objects. The relevant class is shown in listing ?7.

Listing 7: Improper exception handling in class builder. ReflectionDiff Builder.

public class ReflectionDiffBuilder<T> implements Builder<DiffResult<T>> {
/7 [...]
private void appendFields(final Class<?> clazz) {
for (final Field field : FieldUtils.getAllFields(clazz)) {
if (accept(field)) {
try {
diffBuilder.append(field.getName(), readField(field, left, true),
readField(field, right, true));
} catch (final IllegalAccessException ex) {
throw new InternalError("Unexpected IllegalAccessException: " +
ex.getMessage());

3.6 SingletonClassReturningNewlnstance

Analyzing the violation of the SingletonClassReturningNewInstance the false positive shown in listing
??

Listing 8: The CharSet class — mistakenly detected as a flawed singleton pattern application.

public class CharSet implements Serializable {

/7 [...]

protected static final Map<String, CharSet> COMMON =
Collections.synchronizedMap(new HashMap<>());

/7 [...]

static {
COMMON . put (null, EMPTY);
COMMON . put (StringUtils.EMPTY, EMPTY);
COMMON . put ("a-zA-Z", ASCII_ALPHA);
COMMON . put ("A-Za-z", ASCII_ALPHA);
COMMON.put ("a-z", ASCII_ALPHA_LOWER);
COMMON . put ("A-Z", ASCII_ALPHA_UPPER);
COMMON . put ("0-9", ASCII_NUMERIC);

}

/7 [...]

public static CharSet getInstance(final String... setStrs) {
if (setStrs == null) { return null; }
if (setStrs.length == 1) {

final CharSet common = COMMON.get (setStrs[0]);

if (common '= null) { return common; }
}
return new CharSet(setStrs);
}
// [...]

PMD revealed a violation of the Singleton design pattern even though the latter isn’t really implemented in
this class. Actually, we are in front of a “factory” method which, given a variadic sequence of String objects
as input parameters, it creates an instance of CharSet if and only if it is not already stored into the HashMap
static field named COMMON. Finally either a stored or a newly allocated CharSet instance is returned.

In fact from a first glance the PMD result sounds right by only looking at the method name getInstance()
and the singleton template in the body method (...if (common != null)...).

3.7 Custom Rule — Utility Class Rule

AnnotationUtils exception.ExceptionUtils RegExUtils

ArchUtils LocaleUtils SerializationUtils
ArrayUtils math. IEEE754rUtils StringEscapeUtils
BooleanUtils math.NumberUtils StringUtils
CharSequenceUtils ObjectUtils SystemUtils
CharSetUtils RandomStringUtils text.FormattableUtils
CharUtils RandomUtils text. Word Utils
ClassLoaderUtils reflect. ConstructorUtils ThreadUtils
ClassPathUtils reflect.FieldUtils time.CalendarUtils
ClassUtils reflect.InheritanceUtils time.DateFormatUtils
compare.ComparableUtils reflect. MemberUtils time.DateUtils
concurrent.ConcurrentUtils reflect. MethodUtils time.DurationFormatUtils
EnumUtils reflect. TypeUtils time.DurationUtils

event.EventUtils

Figure 3: List of classes matching the utility class custom rule we implement.

Figure 7?7 shows the list of classes in Apache Commons Lang matching the utility class rule we implement
in the analysis section.

Concerning the custom rule, we want to join Class WithOnlyPrivateConstructorsShouldBeFinal and Use Uti-
lityClass in the same rule since the library contains plenty of utility classes which do not comply with this
two rules. In fact our custom rule merges them at considering the Utils suffix the Apache Commons suite of
libaries uses.

Moreover, PMD reports that all the utility classes violate the GodClass rule considering them too complex,
given their low cohesion, high coupling, and high line of code count. However, since the Commons Lang
library is quite legacy, the Apache developers cannot modify their existing interface up to a certain point.
Therefore, we could consider these violations as false positives.

4 Sonarqube results

2 7 ¥¥ Bugs Reliability (D
O £ Vulnerabilities Security (A
37 Q@ Security Hotspots @ O 0_0% Reviewed Security Review (E

50d Debt 5k ® Code Smells Maintainability (A

O 93.7% 6.9K O 2.0% 94

Coverage on 16K Lines to cover Unit Tests Duplications on 31K Lines Duplicated Blocks

Figure 4: Sonarqube report summary as shown by the “server” module.

Figure 7?7 shows the Sonarqube report summary as shown by the web interface of the “server” module.
Even if the metrics collected are quite rich and diverse, the “scanner” component took only approximately

5 minutes to generate the report as the codebase is not particularly large (especially given sources are only
roughly 20KLOC).

The report shows 27 bugs found, no vulnerabilities, 37 security-related problems, and 5.000 code smells, for
estimated debt of 50 man-days. Additionally, the 6.900 tests have a combined coverage of 93.7% (94.9% line
coverage and 91.7% statement coverage) and a duplication figure of 2.0% across 94 duplicated code blocks.

A breakdown of the 27 bugs reported by Sonarqube follows:
« 3 critical bugs related to the use of assertNotNull(...) in tests over primitive arguments, which will
always lead to true;

o 2 likely false positive critical bugs related to assertEquals(...) comparing dissimilar types, that are
indeed equivalent anonymous class instances;

e 5 major bugs related to the unchecked use of potentially null variables;

« 3 false positive major bugs related to using reference equality on objects, whose use is correct since the
checks reside in Object.equals(Object) overrides and it is there for performance reasons;

e 5 major bugs related to trivial assertions in tests that the test developers describe in a comment as //
sanity checks:;

o 1 major bug related to an Object.clone() override possibly returning null;

e 1 major bug related to a reflective check of whether two objects have the same dynamic type, where
Sonarqube suggests to use the method isAssignableFrom(...);

e 3 minor bugs related to int expressions being stored in long variables;
e 2 minor bugs related to wvolatile fields being used instead of thread-safe types;

e 1 minor bug related to an iterator implementation not throwing NoSuchFElementEzception when no
next element is available;

o 1 minor bug related to an Object.hashCode() override not having a matching Object.equals(Object)
override.

https://youtu.be/Zx_Ay5El2Qk
https://youtu.be/Zx_Ay5El2Qk

The 5.000 code smells break down in 236 blocker problems, 167 critical problems, 772 major problems, 117
minor problems and 3.700 “info”-level warnings.

All the security related problems mention the cryptographically unsafe nature of the java.util. Random class
due to the use of pseudo-randomness and an inadequately random seed. These errors can be discarded
since as mentioned in the analysis section, Apache Commons Lang does not provide by its contract any
cryptographically safe feature and thus the use of pseudo-randomness is acceptable.

5 Conclusions

The Apache Commons Lang library, as shown by our analysis, has several anti-patterns and design flaws that
might be avoided or mitigated. Both of the tools used show several violations according to their respective
rule-sets. Given the relatively legacy nature of the project a certain number of flaws is to be expected. This
is especially true given the wide use of utility classes, a practice that nowadays for new projects is frowned
upon as it breaks traditional Object Oriented Programming principles.

We find both PMD and Sonarqube effective tools. PMD is highly customizable in a simple fashion, yet very
powerful in the realm of static code analysis. Sonarqube is able to provide deeper insights and additional
metric, at the cost of a more highly integrated design and a lesser degree of customization.

Our results likely apply to other Apache Commons libraries, given that many of them are meant to be used
in a similar fashion as the Lang library. This is especially true if these libraries use the same class structure
and widely exploit the utility class pattern, a likely true assumption given that some of them are direct
spin-offs of packages in the Lang library (like Commons Text). However, given the peculiar “utility” role
Apache Commons plays in Java development, these techniques do not directly translate for a generic Java
library.

10

	Project selection process
	The Apache Commons Lang Project

	Analysis
	Choice of Detection Rules
	Custom Detection Rule
	Sonarqube

	PMD Results
	AvoidReassigningParameters
	UseVarargs
	FieldDeclarationsShouldBeAtStartOfClass
	ConstructorCallsOverridableMethod
	PreserveStackTrace
	SingletonClassReturningNewInstance
	Custom Rule – Utility Class Rule

	Sonarqube results
	Conclusions

