
Assignment 4 – Software Design and Modelling
Applying Design by Contract to an Existing Project

Filippo Casari Claudio Maggioni

Contents

1 Project Selection 1
1.1 The Apache Commons Lang Project . 1
1.2 Scope of Contract Implementation . 2

2 Approach to Contract Design 3

3 Contract Implementation 4
3.1 Bitwise Operations and the FluentBitSet . 5

3.1.1 The xor Command Method . 5
3.1.2 The isEmpty Query Method . 6

3.2 Fraction Arithmetic and the Fraction Class . 6
3.2.1 The Negate Query Method . 6
3.2.2 The getDenominator Query Method . 7

4 Unit Tests and Code Contracts 7

5 Conclusions 7

1 Project Selection

The aim of this project is to apply Design by Contract principle to a part of or a complete application
by not altering the application behaviour. No restrictions are placed on the size or type of project,
other than being hosted on GitHub or otherwise on a public website.

https://
youtu.be/
rdnpdJXgV0Q

We first consider the vavr-io/vavr GitHub project, a Java library containing some data structures
useful for functional programming (e.g. “maybe” and “either” types). However, due to peculiar
design choices in the library codebase allowing for concise client code, the interfaces provided have
an insufficient number of query methods to effectively writed contracts, and therefore we discard the
project.
We instead choose the Apache Commons Lang library (apache/commons-lang on GitHub), an
Apache Software Foundation1 sponsored support library for Java. We choose this project mainly
for the support role it fulfills, as many classes implement data structures and collections that are
independent from each other and implementing an easy to understand interface. Additionally, the
library is written with classical Java software design principles allowing for a richer set of query
methods to potentially use in contracts.

1.1 The Apache Commons Lang Project

According to GitHub, the project has 179 contributors as of October 30th, 2022.

1https://apache.org

1

https://youtu.be/rdnpdJXgV0Q
https://youtu.be/rdnpdJXgV0Q
https://youtu.be/rdnpdJXgV0Q
https://github.com/vavr-io/vavr
https://github.com/apache/commons-lang
https://apache.org

Files Language Blank Comment Code
464 Java 16792 63093 89748
30 Text 1852 0 11972
26 XML 408 530 3958
1 Maven 29 39 967
4 Markdown 40 0 271
1 HTML 13 16 236
5 YAML 37 96 152
1 Velocity Template Language 23 31 90
1 Groovy 12 22 81
1 CSV 1 0 16
1 Properties 3 19 3
1 Bourne Shell 0 2 2
536 SUM 19210 63848 107496

Table 1: cloc output for the Apache Commons Lang project repository at revision
770e72d2f78361b14f3fe27caea41e5977d3c638.

All the source and test classes are contained within in the package org.apache.commons.lang3 or in
a sub-package of that package. For the sake of brevity, this prefix is omitted from now on when
mentioning packages and classes in the project.
We choose to analyze the code at the git revision 770e72d2f78361b14f3fe27caea41e5977d3c638 of
the library.
According to GitHub, the project has more than 2,400 stars, more than 1,500 forks, 222 open issues
on the Apache Commons JIRA instance2. We analyze some line of code metrics of the project by
using the cloc tool, which returns what shown in Table 1.

1.2 Scope of Contract Implementation

As the Apache Commons Lang project ostensibly provides utility classes and collections, the unit of
functionality is often a single class. We therefore decide to select 4 classes on which to design contracts.
For sake of brevity from here onward the prefix org.apache.commons.lang3 is omitted from each class
name. The classes we choose are.

math.IEEE754rUtils a utility class able to efficiently sort floating point arrays;
math.Fraction a class representing a fraction with an integer numerator and denominator;
CharRange a memory efficient implementation of a set of chars within a contiguous range;
util.FluentBitSet a memory efficient implementation of ordered list of bits supporting bitwise opera-

tions and fast random access.

We choose these classes as we feel they are a significant sample of the API the Apache Commons Lang
offers, as it is mainly composed by utility classes and implementations of data structures that client
developers may use to support their client code.
As the Commons Lang project has a rather complicated build system targeting different Java versions
and dividing sources and tests in different compilation modules, we decide to create a new project
copying the sources of the aforementioned classes and the relevant tests. However, we have to make
minor edits on the tests sources. This is because all test classes extend a generic setup class Abstract-
LangTest, which performs some global tear down operations that are irrelevant in the scope of this

2https://issues.apache.org/jira/projects/LANG/, as of 2022-12-06 (ISO 8601 date)

2

https://issues.apache.org/jira/projects/LANG/

Files Language Blank Comment Code
8 Java 706 1541 3342
15 XML 0 0 1067
6 Text 6 0 149
1 Maven 4 0 54
1 Markdown 3 0 7
31 SUM 719 1541 4619

Table 2: cloc output for the main (not annotated) branch of the contracts project.

Files Language Blank Comment Code
13 Java 793 1667 3736
15 XML 0 0 1058
6 Text 6 0 149
1 Maven 4 0 65
1 Markdown 5 0 34
36 SUM 808 1667 5042

Table 3: cloc output for the annotated branch of the contracts project.

assignment. Therefore, in our copy we remove the extends clause from all the tests. Additionally, part
of both the source and test code performs some validation operations which depend on other utility
classes in Commons Lang. We therefore include Commons Lang as a dependency to our project to
allow this code to be compiled.
The resulting project can then be found in the branch main of the repository

usi-si-teaching/msde/2022-2023/software-design-and-modeling/assignment-4-dbc/group-1

on gitlab.com.
We then run the cloc tool again on these sources to provide a baseline for further analysis of the
annotated code. The line of code metrics can be found in Table 2.

2 Approach to Contract Design

Writing contracts for the classes we choose is quite easy, as documentation, tests and pre-existing
exception-based argument checking paints a clear picture of how each public interface behaves. There-
fore our approach is relatively straightforward.
To define a method contract, we first look at the aforementioned resources to understand the behaviour
of class. If needed, we the precondition clause, considering both the existing sources in the method
body and additional constraints on parameter values specified in the method documentation (though
in our experience with these classes we can say the Commons Lang developers are quite thorough in
their in-code assertions). We then define a postcondition clause when needed, taking count of the
class’s behaviour and the domain of return values.
To check if a contract is potentially defined in a wrong way we run the relevant test suite. With the
exception of assertions relating to precondition violations (an issue discussed in Section 4), the unit
tests are as effective with the original code as they are with the asserted code. This allows to check
that our changes do not alter the intended behaviour of each class and additionally gives jSicko many
opportunities to evaluate preconditions and postconditions with test data.

3

https://gitlab.com/usi-si-teaching/msde/2022-2023/software-design-and-modeling/assignment-4-dbc/group-1/

All the contracts we implement do not rely on any change on the original source code other than
jSicko clause definitions and adding @Pure annotations to query methods.

3 Contract Implementation

In order to implement design by contract, we use version 1.0.0 of the jSicko contract checking library
written by Dr. Andrea Mocci. The library allows definitions of preconditions and postconditions in
default methods of interfaces which contracted class reference. We define a total of 18 preconditions
and 38 postconditions. We define contracts for both command methods and query methods, using the
latter ones to define a more detailed domain of the values returned and to describe inter-dependencies
between queries. With the exception of math.IEEE754rUtilsContracts, the contracts we define are
not complete as they do not span all the side effects caused by the command methods and all the
inter-dependencies between the query methods.
The resulting code after contract implementation can then be found in the annotated branch of the
repository

usi-si-teaching/msde/2022-2023/software-design-and-modeling/assignment-4-dbc/group-1

on gitlab.com. We now specify the methods our contracts apply to and in which interfaces the matching
contracts can be found.
The interface math.IEEE754rUtilsContracts implements a complete set of contracts for the methods
of class
math.IEEE754rUtils, namely:

• static double min(double[]) and overloads;
• static double max(double[]) and overloads.

The interface CharRangeContracts implements the contract of method boolean contains(CharRange)
of class CharRange.
The interface math.IEEE754rUtilsContracts implements contracts for some methods of class
math.Fraction, namely:

• static Fraction getFraction(int, int) and
static Fraction getFraction(int, int, int);

• static Fraction getReducedFraction(int, int);
• public int getDenominator();
• public Fraction negate();
• public Fraction abs();
• public Fraction reduce().

Finally, the interface util.FluentBitSet implements contracts for some methods in the util.FluentBitSet
class, namely:

• FluentBitSet and(FluentBitSet) and overloads;
• FluentBitSet andNot(FluentBitSet) and overloads;
• FluentBitSet or(FluentBitSet) and overloads;
• FluentBitSet clear() and overloads;
• boolean get(int) and overloads;
• boolean isEmpty();
• FluentBitSet flip(int) and overloads;
• FluentBitSet xor(FluentBitSet);

4

https://gitlab.com/usi-si-oss/codelounge/jSicko
https://gitlab.com/usi-si-teaching/msde/2022-2023/software-design-and-modeling/assignment-4-dbc/group-1/

• FluentBitSet set(int);
• int nextSetBit(int) and int previousSetBit(int);
• int nextClearBit(int) and int previousClearBit(int) .

After implementing the aforementioned contracts we run the cloc tool again to understand the impact
of contract code on source code metrics. Results are shown in Table 3.
The following sections go in further detail on the implementation of some contracts, providing addi-
tional insight on the strategies we use for defining them.

3.1 Bitwise Operations and the FluentBitSet

We worked on the class util.FluentBitSet, which is an alternative implementation of class java.util.BitSet
providing some additional operations.
The original BitSet class implements a bit vector that expands as necessary. Bits are represented as
boolean values, while non-negative integers serve as indexes for accessing them. The class allows to
inspect, set, or clear certain indexed bits. Various bitwise logical operations can be applied to a BitSet
to change its contents without changing the contents of another BitSet.
The util.FluentBitSet class varies from BitSet as it allows its command methods to return this to
allow more succinct client code. This style of command methods is called “fluent”, hence the name of
the class.

3.1.1 The xor Command Method

1 @Ensures (" xor_fbs ")
2 public FluentBitSet xor(final BitSet set)

Listing 1: Postcondition declaration for the xor command method in the util.FluentBitSet class.

1 @Pure
2 default boolean xor_fbs (final FluentBitSet returns , final BitSet set) {
3 int card1 = old(this). cardinality ();
4 int card2 = set. cardinality ();
5 final boolean bool;
6 if (card1 + card2 > this. length ()) {
7 bool = (card1 + card2 - this. length ()) >= this. cardinality ();
8 return bool && test_length (returns , set :: length);
9 } else {

10 return (card1 + card2) >= this. cardinality ();
11 }
12 }

Listing 2: Matching postcondition clause for the xor command method in the util.FluentBitSet class.

In order to write clauses for this method we use the int cardinality() query method. The cardi-
nality of a FluentBitSet is the total number of bits set to 1. We additionally use the int length()
query method, returning the position of the most significant bit set to 1 in the set.
The FluentBitSet xor(FluentBitSet) is a command method in FluentBitSet performing an in-place
bitwise exclusive-or operation with another set instance, and returning this instance.
In the contract (shown in Listing 2) we say that when the sum of the cardinalities of the old Fluent-
BitSet state and the argument are greater than the returned length, the cardinality of the returned
object must be less than the sum of the cardinalities of the old state and the argument minus the
length of the new state.
For instance, let us consider:

5

old(this).cardinality() = set.cardinality() = 8, this.cardinality() = 0,
and this.length() = 8

then (8 + 8 − 8) is greater or equal to 0, where 0 is the cardinality of the new state. In contrary, if the
sum is not greater than the length of the FluentBitSet we have:
old(this).cardinality() = 0, set.cardinality() = 8, this.cardinality() = 8,
and this.length() = 8

then (8 + 0 − 8) is greater or equal to 0, where 0 is the cardinality of the result of the xor operation.

3.1.2 The isEmpty Query Method

1 @Pure
2 @Ensures (" is_empty ")
3 public boolean isEmpty ()

Listing 3: Postcondition declaration for the isEmpty query method in the util.FluentBitSet class.

1 @Pure
2 default boolean is_empty (final boolean returns) {
3 return returns == (cardinality () == 0) && returns == (length () == 0);
4 }

Listing 4: Matching postcondition clause for the isEmpty query method in the util.FluentBitSet class.

We additionally define a postcondition clause for the boolean isEmpty() query method, returning
true when all bits in the sets are 0. This condition trivially is true if and only if its length is also 0,
and our contract indeed checks this fact.

3.2 Fraction Arithmetic and the Fraction Class

Our contracts for the math.Fraction class are defined in the interface math.FractionContracts. Fraction
is a class that extends Number and implements an arithmetic fraction compose of an integer numerator
and denominator. This class is immutable, inter-operates with most methods that accept a Number
instance. We report below the methods on which we implemented contracts.

3.2.1 The Negate Query Method

1 @Pure
2 @Ensures (" check_if_negative ")
3 // [clause omitted]
4 public Fraction negate ()

Listing 5: Postcondition declaration for the negate query method in math.Fraction.

1 @Pure
2 default boolean check_if_negative (final Fraction returns) {
3 if ((this. getNumerator () > 0 && this. getDenominator () > 0) ||
4 (this. getNumerator () < 0 && this. getDenominator () < 0)) {
5 return returns . getNumerator () < 0;
6 }
7 return returns . getNumerator () > 0;
8 }

Listing 6: Matching postcondition clause for the negate query method in math.Fraction.

6

Here we want to make sure that the returned Fraction instance will be positive if the starting fraction
was negative, and vice versa. Consequently, we adopt the clause shown in Listing 6 as a postcondition
of the method negate (shown in Listing 5). This an instance of the aforementioned inter-dependencies
between query method behaviours.

3.2.2 The getDenominator Query Method

1 @Ensures (" non_zero_den ")
2 public int getDenominator ()

Listing 7: Postcondition declaration for the getDenominator query method in math.Fraction.

1 default boolean non_zero_den (final int returns) {
2 return returns != 0;
3 }

Listing 8: Matching postcondition clause for the getDenominator query method in math.Fraction.

Here we introduce a simple postcondition checking a property that any fraction denominator has,
namely that it is different from 0. This is an instance of a contract used to restrict the domain of the
return value further than its type definition is able to capture.

4 Unit Tests and Code Contracts

The only issue we find in implementing contracts has to do with test checking operations that result
in precondition violations. As some preconditions are defensively checked by the original Commons
Lang code, some tests check the thrown exception type to be exactly the one thrown in the check.
As jSicko checks preconditions before method entry, and jSicko throws a special exception (namely a
child of AssertionError) when preconditions are violated, the assertions for the original source code
fail as the thrown exception type is does not match the expected one.
To solve this error, we simply modify to all these assertions to allow for AssertionErrors. For JUnit
assertThrows(...) assertions we change the expected thrown type to be Throwable, as there is
no more specific type that is both an Error and a RuntimeException. These alterations and jSicko
contract code are the only changes we perform on the source code from Apache Commons Lang.

5 Conclusions

Apache Commons Lang is a Java project using well-established traditional design best practices. This
is quite handy as its implementation can be easily understood and the project is well documented.
The project also implements a variety of design patterns, making this contract implementation quite
diverse as different classes are implemented in different ways beside domain-specific logic. For instance,
the utility class math.IEEE754rUtils allows us to test jSicko’s ability to contract check static methods,
and we can say it does that effectively from the experience we gathered.
The process used to write contracts in this assignment can be applied to other projects similar to
Apache Commons Lang with respect to documentation availability and the set of Java programming
language features use. However, we speculate the approach would need to be changed for projects
with inadequate documentation or using newer or more advanced features of the Java language (like
proxies), which may be able to break the internal abstractions used by jSicko.

7

	Project Selection
	The Apache Commons Lang Project
	Scope of Contract Implementation

	Approach to Contract Design
	Contract Implementation
	Bitwise Operations and the FluentBitSet
	The xor Command Method
	The isEmpty Query Method

	Fraction Arithmetic and the Fraction Class
	The Negate Query Method
	The getDenominator Query Method

	Unit Tests and Code Contracts
	Conclusions

