
Assignment 1 – Software Analysis
Static Analysis with Infer

Claudio Maggioni

1 Project selection

Given that this assignment draws parallels with the class of Software Design and Modelling of last
semester, specifically regarding static analyzers, I choose to analyze the same project I analyzed in
the past with PMD and SonarQube using Infer1 to make for an interesting comparison between static
analysis paradigms.
The project I analyze is therefore apache/commons-lang.

1.1 The Apache Commons Lang Project

The Apache Commons family of libraries is an Apache Software Foundation2 sponsored collection of
Java libraries designed to complement the standard libraries of Java. The Apache Commons Lang
project focuses on classes that would have fitted in the java.lang package if they were included with
Java.
All the source and test classes are contained within in the package org.apache.commons.lang3 or in
a sub-package of that package. For the sake of brevity, this prefix is omitted from now on when
mentioning file paths and classes in the project.
I choose to analyze version 3.12.0 of the library (i.e. the code under the git tag rel/commons-lang-
3.12.0 ) because it is the same version analyzed during the SDM class.
To verify that the project satisfies the 5000 lines of code requirement, I run the cloc tool. Results
are shown in table 1. Given the project has more than 86,000 lines of Java code, this requirement is
satisfied.

Language Files Blank Comment Code

Java 409 15,790 60,363 86,056
HTML 22 1,015 100 13,028
Text 30 1,858 0 12,415
XML 38 434 539 4,819
Maven 1 31 37 940
JavaScript 5 21 78 698
Markdown 3 38 0 202
CSS 4 36 66 140
Velocity Template Language 1 23 31 90
Groovy 1 12 22 81
YAML 3 12 42 55
Bourne Shell 1 0 2 2

Total 518 19,270 61,280 118,526

Table 1: Output of the cloc tool for the Apache Commons Lang project at tag rel/commons-lang-
3.12.0 (before fixes are applied).

1https://fbinfer.com/
2https://apache.org/

1

https://github.com/apache/commons-lang
https://fbinfer.com/
https://apache.org/


2 Running the Infer tool

The relevant source code to analyze has been copied to the directory before in the assignment repository

usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-2

on gitlab.com. The script docker-infer.sh can be executed to automatically run the Infer tool using
default options through the course tools docker image bugcounting/satools:y23.
The script selects Java 17 to compile the project as this is required to not make the Animal Sniffer
Maven build plugin fail with the message “This feature requires ASM7”.
The script executes Infer in Maven capture mode executing the compile and test targets while disabling
the Apache RAT software license checker (which fails for this release). Since unit tests are executed,
running the script before and after the warning guided refactoring ensures the fixes I introduce do not
introduce regressions.
The analysis outputs are located in before/infer-out/report.txt.

3 Results

Table 2 shows the results of the analysis performed by Infer providing comments on true and false
positives and the actions taken for each result.

File Line Kind True
Pos.

Reason why flagged expression is
a false positive

AnnotationUtils.java 72 Null Yes

–reflect/MethodUtils.java 486 Null Yes
reflect/FieldUtils.java 126 Null Yes
concurrent/MultiBackgroundInitializer.java 160 Thread

Safety
Yes

builder/ToStringBuilder.java 223 Null No Infer flags the value null when used as
a nullable method argumentbuilder/ReflectionToStringBuilder.java 131 Null No

time/DurationUtils.java 142 Null No The method which may return a null
value returns a non-null value if its pa-
rameter is non-null, and a non-null pa-
rameter is given

CharSetUtils.java 181 Null No According to java.lang documentation,
the method always returns a non-null
value

reflect/FieldUtils.java 341 Null No A utility method is used to guard the
dereference reported with an exception
throw

reflect/FieldUtils.java 385 Null No
reflect/FieldUtils.java 599 Null No
reflect/FieldUtils.java 644 Null No

reflect/MethodUtils.java 987 Null No The method which may return a null
value returns a non-null value if its pa-
rameter is non-null, and a non-null pa-
rameter is always given according to the
java.lang documentation for the inner
nested method

Table 2: Results of the Infer static analysis tool execution with default options. True Pos. denotes
whether a result is a true positive, while Kind denotes with Null and Thread Safety respec-
tively null dereference warnings and thread safety violations.

2

https://gitlab.com/usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-2


In total Infer reports 13 warnings, 12 of which are null dereference warnings and 1 is a thread safety
violation. Of all warnings, 4 are true positives and 9 are false positives, resulting in a false positive
ratio of over 69%. These values are summarized in table 3.

Total number of warnings: 13

Null dereference warnings: 12
Thread safety violations: 1

True positives: 4
False positives: 9

Table 3: Quantitative results of the static analysis performed by Infer.

3.1 False Positives

As can be deduced from table 2, Infer especially struggles at determining Vthe null safety of nested
method calls or non-trivial data flow paths. This is sometimes caused by insufficient knowledge of the
nullability contracts of the Java standard library (e.g. java.lang package).
In other cases, the flagged expression is guarded by an utility method throwing an exception if its value
is indeed null. One of such guards is the static Validate.notNull(Object, String, Object...)
method, which checks if its first argument is null and throws a NullPointerException if so.
Additionally, Infer seems to struggle with boxed primitives and not understanding that their value is
always non-null by construction. As an example I provide the warning reported in the file time/Du-
rationUtils.java:

Listing 1 Method toMillisInt(Duration) of class time.DurationUtils in Apache Commons Lang 3.12.0.
139 public static int toMillisInt(final Duration duration) {
140 Objects.requireNonNull(duration, "duration");
141 // intValue() does not do a narrowing conversion here
142 return LONG_TO_INT_RANGE.fit(Long.valueOf(duration.toMillis())).intValue();
143 }

Here Infer reports that the first argument of LONG_TO_INT_RANGE.fit(Long) may be null. However,
the return value of Long.valueOf(long) is always non-null since the method simply boxes its long
argument.
Finally, some warnings are caused by Infer flagging the use of the null keyword as a method argument
for methods that would accept a nullable argument in that position without causing null dereferences.
This warning could point to a potential ambiguity is selecting the right method to call at compile time
given the argument types (i.e. static dispatching), as null is a valid expression of all object types.
For example, in the given class:

class C {
m(String s) {}
m(Object o) {}

}

A call to C.m(null) would be ambiguous as null is both a String and an Object, thus a cast to either
type woule be required to make the code compile. However, the warnings reported by Infer do not
present such ambiguity as in those cases overloaded methods have different numbers of parameters.
Additionally, even introducing explicit casts for all null arguments does not extinguish the warning.
Therefore, I can not find a conclusive explaination on the nature of the false positive, however I can

3



attest to these instances being indeed false positives by having manually verified that the methods in
question indeed can accept a null value without causing null dereferences.

3.2 True Positives

In this section I now cover the warnings that are true positives and thus are causes for refactoring.

4


	Project selection
	The Apache Commons Lang Project

	Running the Infer tool
	Results
	False Positives
	True Positives


