
Assignment 2 – Software Analysis
Static Analysis with Infer

Claudio Maggioni

1 Project selection

Given that this assignment draws parallels with the class of Software Design and Modelling of last
semester, specifically regarding static analyzers, I choose to analyze the same project I analyzed in
the past with PMD and SonarQube using Infer1 to make for an interesting comparison between static
analysis paradigms.
The project I analyze is therefore apache/commons-lang.

1.1 The Apache Commons Lang Project

The Apache Commons family of libraries is an Apache Software Foundation2 sponsored collection of
Java libraries designed to complement the standard libraries of Java. The Apache Commons Lang
project focuses on classes that would have fitted in the java.lang package if they were included with
Java.
All the source and test classes are contained within in the package org.apache.commons.lang3 or in
a sub-package of that package. For the sake of brevity, this prefix is omitted from now on when
mentioning file paths and classes in the project.
I choose to analyze version 3.12.0 of the library (i.e. the code under the git tag rel/commons-lang-
3.12.0) because it is the same version analyzed during the SDM class.
To verify that the project satisfies the 5000 lines of code requirement, I run the cloc tool. Results
are shown in table 1. Given the project has more than 86,000 lines of Java code, this requirement is
satisfied.

Language Files Blank Comment Code

Java 409 15,790 60,363 86,056
HTML 22 1,015 100 13,028
Text 30 1,858 0 12,415
XML 38 434 539 4,819
Maven 1 31 37 940
JavaScript 5 21 78 698
Markdown 3 38 0 202
CSS 4 36 66 140
Velocity Template Language 1 23 31 90
Groovy 1 12 22 81
YAML 3 12 42 55
Bourne Shell 1 0 2 2

Total 518 19,270 61,280 118,526

Table 1: Output of the cloc tool for the Apache Commons Lang project at tag rel/commons-lang-
3.12.0 (before fixes are applied).

1https://fbinfer.com/
2https://apache.org/

1

https://github.com/apache/commons-lang
https://fbinfer.com/
https://apache.org/

2 Running the Infer tool

The relevant source code to analyze has been copied to the directory before in the assignment repository

usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-2

on gitlab.com. The script docker-infer.sh can be executed to automatically run the Infer tool using
default options through the course tools docker image bugcounting/satools:y23.
The script executes Infer in Maven capture mode executing the compile and test targets while disabling
the Apache RAT software license checker (which fails for this release) and the Animal Sniffer Maven
plugin do to the failure message “This feature requires ASM7” it produces if ran. Since unit tests
are executed, running the script before and after the warning guided refactoring ensures the fixes I
introduce do not introduce regressions.
The analysis outputs are located in before/infer-out/report.txt.

3 Results

Table 2 shows the results of the analysis performed by Infer providing comments on true and false
positives and the actions taken for each result.

File Line Kind True
Pos.

Reason why flagged expression is
a false positive

AnnotationUtils.java 72 Null Yes
reflect/MethodUtils.java 486 Null Yes
concurrent/MultiBackgroundInitializer.java 160 Thread

Safety
Yes

builder/ToStringBuilder.java 223 Null No Infer flags the value null when used as
a nullable method argumentbuilder/ReflectionToStringBuilder.java 131 Null No

time/DurationUtils.java 142 Null No The method which may return a null
value returns a non-null value if its pa-
rameter is non-null, and a non-null pa-
rameter is given

CharSetUtils.java 181 Null No According to java.lang documentation,
the method always returns a non-null
value

reflect/FieldUtils.java 126 Null No
A utility method is used to guard the
dereference reported with an exception
throw

reflect/FieldUtils.java 341 Null No
reflect/FieldUtils.java 385 Null No
reflect/FieldUtils.java 599 Null No
reflect/FieldUtils.java 644 Null No

reflect/MethodUtils.java 987 Null No The method which may return a null
value returns a non-null value if its pa-
rameter is non-null, and a non-null pa-
rameter is always given according to the
java.lang documentation for the inner
nested method

Table 2: Results of the Infer static analysis tool execution with default options. True Pos. denotes
whether a result is a true positive, while Kind denotes with Null and Thread Safety respec-
tively null dereference warnings and thread safety violations.

2

https://gitlab.com/usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-2

In total Infer reports 13 warnings, 12 of which are null dereference warnings and 1 is a thread safety
violation. Of all warnings, 3 are true positives and 10 are false positives, resulting in a precision of
23%. These values are summarized in table 3.

Total number of warnings: 13

Null dereference warnings: 12
Thread safety violations: 1

True positives: 3
False positives: 10

Table 3: Quantitative results of the static analysis performed by Infer.

3.1 False Positives

As can be deduced from table 2, Infer especially struggles at determining Vthe null safety of nested
method calls or non-trivial data flow paths. This is sometimes caused by insufficient knowledge of the
nullability contracts of the Java standard library (e.g. java.lang package).
In other cases, the flagged expression is guarded by an utility method throwing an exception if its value
is indeed null. One of such guards is the static Validate.notNull(Object, String, Object...)
method, which checks if its first argument is null and throws a NullPointerException with a “pretty”
message composed from a format string and variadic arguments if so.
Additionally, Infer seems to struggle with boxed primitives and not understanding that their value is
always non-null by construction. As an example I provide the warning reported in the file time/Du-
rationUtils.java:

Listing 1 Method toMillisInt(Duration) of class time.DurationUtils in Apache Commons Lang 3.12.0.
139 public static int toMillisInt(final Duration duration) {
140 Objects.requireNonNull(duration, "duration");
141 // intValue() does not do a narrowing conversion here
142 return LONG_TO_INT_RANGE.fit(Long.valueOf(duration.toMillis())).intValue();
143 }

Here Infer reports that the first argument of LONG_TO_INT_RANGE.fit(Long) may be null. However,
the return value of Long.valueOf(long) is always non-null since the method simply boxes its long
argument.
Finally, some warnings are caused by Infer flagging the use of the null keyword as a method argument
for methods that would accept a nullable argument in that position without causing null dereferences.
This warning could point to a potential ambiguity is selecting the right method to call at compile time
given the argument types (i.e. static dispatching), as null is a valid expression of all object types.
For example, in the given class:

class C {
m(String s) {}
m(Object o) {}

}

A call to C.m(null) would be ambiguous as null is both a String and an Object, thus a cast to either
type woule be required to make the code compile. However, the warnings reported by Infer do not
present such ambiguity as in those cases overloaded methods have different numbers of parameters.
Additionally, even introducing explicit casts for all null arguments does not extinguish the warning.

3

Therefore, I can not find a conclusive explaination on the nature of the false positive, however I can
attest to these instances being indeed false positives by having manually verified that the methods in
question indeed can accept a null value without causing null dereferences.

3.2 True Positives

In this section I now cover the warnings that are true positives and thus are causes for refactoring.
A copy of the entire code base where refactoring has been applied can be found in the after directory
of the assignment’s repository.

Listing 2 Method getShortClassName(Class<?>) of class AnnotationUtils in Apache Commons Lang
3.12.0.

71 @Override
72 protected String getShortClassName(final Class<?> cls) {
73 for (final Class<?> iface : ClassUtils.getAllInterfaces(cls)) {
74 if (Annotation.class.isAssignableFrom(iface)) {
75 return "@" + iface.getName();
76 }
77 }
78 return StringUtils.EMPTY;
79 }

Listing 2 shows the location of the first true positive warning. Here, ClassUtils.getAllInterfaces(cls)
at line 73 may return a null value thus potentially causing a null dereference when iterating in the
enhanced for loop. Indeed, the method’s implementation shows that while for non-null cls values the
return value is non-null, if cls is null null is returned. Since the method is protected its signature
is visible to all child classes, even ones potentially outside of the Apache Commons Lang library. As
the method’s documentation does not specify anything about the nullability of the argument cls, its
value may indeed be null and thus a refactor is needed to avoid the potential null dereference.
I choose to simply return StringUtils.EMPTY when cls is null. The refactored implementation can
be found in listing 3.

Listing 3 Refactor of method getShortClassName(Class<?>) of class AnnotationUtils.
71 @Override
72 protected String getShortClassName(final Class<?> cls) {
73 final List<Class<?>> interfaces = ClassUtils.getAllInterfaces(cls);
74 if (interfaces == null) {
75 return StringUtils.EMPTY;
76 }
77

78 for (final Class<?> iface : interfaces) {
79 if (Annotation.class.isAssignableFrom(iface)) {
80 return "@" + iface.getName();
81 }
82 }
83 return StringUtils.EMPTY;
84 }

Next, class reflect.MethodUtils contains a bug due to insufficient defensiveness when accepting the

4

method parameters.

Listing 4 Method getVarArgs(Object[], Class<?>[]) of class reflect.MethodUtils in Apache Commons
Lang 3.12.0.

461 static Object[] getVarArgs(final Object[] args, final Class<?>[] methodParameterTypes) {
462 if (args.length == methodParameterTypes.length && (args[args.length - 1] == null ||
463 args[args.length -

1].getClass().equals(methodParameterTypes[methodParameterTypes.length -
1]))) {

↪→

↪→

464 // The args array is already in the canonical form for the method.
465 return args;
466 }
467

468 // Construct a new array matching the method's declared parameter types.
469 final Object[] newArgs = new Object[methodParameterTypes.length];
470

471 // Copy the normal (non-varargs) parameters
472 System.arraycopy(args, 0, newArgs, 0, methodParameterTypes.length - 1);
473

474 // Construct a new array for the variadic parameters
475 final Class<?> varArgComponentType = methodParameterTypes[methodParameterTypes.length -

1].getComponentType();↪→

476 final int varArgLength = args.length - methodParameterTypes.length + 1;
477

478 Object varArgsArray =
Array.newInstance(ClassUtils.primitiveToWrapper(varArgComponentType), varArgLength);↪→

479 // Copy the variadic arguments into the varargs array.
480 System.arraycopy(args, methodParameterTypes.length - 1, varArgsArray, 0, varArgLength);
481

482 if (varArgComponentType.isPrimitive()) {
483 // unbox from wrapper type to primitive type
484 varArgsArray = ArrayUtils.toPrimitive(varArgsArray);
485 }
486

487 // Store the varargs array in the last position of the array to return
488 newArgs[methodParameterTypes.length - 1] = varArgsArray;
489

490 // Return the canonical varargs array.
491 return newArgs;
492 }

Line 482 of the class (listed in listing 5) is correctly flagged as a potential null dereference as
varArgComponentType may be null. Indeed, according to the documentation of the method gen-
erating its value, the variable is null when the last value in the array methodParameterTypes is a class
object for a non-array class. Such value would violate the method’s contract, which specifies that the
array should correspond to class types for the arguments of a variadic method, and the last argument
in a variadic method is always an array. However, this is not checked defensively, and we can fix this
by introducing a check after line 475 like this:

if (varArgComponentType == null) {
throw new IllegalArgumentException("last method parameter type is not an array");

}

It is quite interesting Infer was able to detect this null dereference as it stems from a lack of sufficient
defensiveness. Improper use of the method would trigger a NullPointerException without any useful
message indicating the precondition violation.

5

Finally, the last warning involves class concurrent.MultiBackgroundInitializer. The relevant method
source code is shown in listing ??.

Listing 5 Method getVarArgs(Object[], Class<?>[]) of class reflect.MethodUtils in Apache Commons
Lang 3.12.0.

157 @Override
158 protected int getTaskCount() {
159 int result = 1;
160

161 for (final BackgroundInitializer<?> bi : childInitializers.values()) {
162 result += bi.getTaskCount();
163 }
164

165 return result;
166 }

Here, the object pointed by childInitializers is accessed without using any lock, while other
methods of the class use the implicit lock of the instance (i.e. synchronized(this)). Simply adding
a synchronized block around the for loop extinguishes the warning.
The refactoring performed for all three warnings has not produced further warnings, and it has not
caused the failure of any unit test.

4 Conclusions

Given that Apache Commons Lang is a very mature project (the code still contains workarounds
targeting Java 1.3) it is not surprising that Infer has detected a relatively limited number of warnings.
If anything this should be a good testament to the skills and discipline of all project contributors.
However, 3 true positives were found in this production-ready release version. This is a testament to
the insidiousness of some programming mistakes like lack of defensiveness when dealing with possibly
null values and improper use of lock constructs, a fact which applies to this project as well.
The high false positive ratio of the analysis highlights the tradeoff between soundness and completeness
software analysis tecniques face. Given that the true positives were quite non-trivial, nevertheless Infer
proves itself as a useful tool even with mature and production-ready software.
To draw some conclusions between this analysis and the one performed last semester during the SDM
class, I hereby compare the current results with the ones formerly found.
When compared to the PMD source code analyzer and SonarQube, Infer reports issues closer to ex-
ternal quality factors (i.e. user satisfaction, and consequently runtime behaviour) rather than internal
quality ones, such as the adherence to code style rules and presence of adequate documentation.
Some overlap is present in the scope of the analysis of both tools, namely with respect to thread safety
(and null dereference with SonarQube). It is worth to note that all three tool reported warnings with
distinct locations in the source code, and no overlap was found between them.
However, due to its control and data flow analysis capabilities, Infer is a superior tool to understand
and check possible runtime behavior while analyzing only the source code.
We can also say both PMD and SonarQube have superior awareness regarding the behaviour of Java
and its standard library. For example, they are aware of boxing and unboxing of primitive types (and
SonarQube even produces warnings about misuse of the feature), where as hinted by this analysis
Infer seems not to be aware of, at least while searching null dereferences.

6

	Project selection
	The Apache Commons Lang Project

	Running the Infer tool
	Results
	False Positives
	True Positives

	Conclusions

