
Assignment 3:
Extended Java Typechecking

Software Analysis

Due date: 2023-05-02 at 23:00

1. The assignment
Your assignment in a nutshell:

1. Pick a software project written in Java and consisting of at least 1’000 lines of code.
The source code should make significant usage of arrays, strings, or both. The project
can be:

• an open-source project available on GitHub or other public repositories,

• a package or component of the standard Java API,

• a project you developed in the past (for example an assignment or course project),
or

• any other project whose source code is available and that you can share.

2. Add the necessary annotations to the project so that the Checker Framework’s index
checker1 is able to rule out any out-of-bound accesses in the code.

3. Write a short report discussing your work.
Maximum length of the report: 8 pages (A4 with readable formatting).

The assignment must be done individually.
This assignment contributes to 25% of your overall grade in the course.

1See https://checkerframework.org/manual/#index-checker

1

https://checkerframework.org/manual/#index-checker


2. Tools and documentation
The Checker Framework is available, together with Java 11 and Java 17 OpenJDK compil-
ers, in the Docker image bugcounting/satools:y23. Otherwise, instructions to install the
Checker Framework are available on the project’s website:

https://checkerframework.org

The same page includes detailed documentation of the framework as a whole, as well as of
each checker that is available:

https://checkerframework.org/manual/

Make sure to read at least the tutorial, and the documentation for the index checker. See also
Appendix A in this assignment description for some help to configure the Checker Framework
on your project.

2.1. Plagiarism policy
You are allowed to learn from any examples that you find useful; however, you are required
to:

1. write down the solution completely on your own; and,

2. if there is a publicly available example that you especially drew inspiration from, credit
it in the report (explaining what is similar and how your solution differ).

Failure to do so will be considered plagiarism. (If you have doubts about the application of
these rules, ask the instructors before submitting your solution.)

2.1.1. ChatGPT & Co.

The plagiarism policy also applies to AI tools such as ChatGPT or CoPilot:

1. You are allowed to use the help of such tools; however, you remain entirely responsible
for the solution that you submit.

2. If you use any such tools, you must add a section to the report that mentions which tools
you used and for what tasks, how you checked the correctness and completeness of their
suggestions, and what modifications (if any) you introduced on top of the tool’s output.

3. If you use a text-based tool such as ChatGPT, also show a couple of examples of prompts
that you provided, with a summary of the tool’s response.

Failure to abide by these rules, including failing to disclose using AI tools, will be considered
plagiarism.

2

https://checkerframework.org
https://checkerframework.org/manual/
https://checkerframework.org/tutorial/
https://checkerframework.org/manual/#index-checker


3. Tips and suggestions

3.1. Checkers
The Checker Framework is a collection of plugins, each targeting a different set of extended
type annotations. In this assignment you should focus on the index checker, which supports
annotations to specify the “safety” of indexes used to access arrays or strings. If you would
like to explore the capabilities of a different checker available within the Checker Framework
– for example because it matches better the characteristics of the project you are analyzing –
you can use that in addition to the index checker. In this case, you may also want to check
with us (the instructors) before doing so, so that we can advise you about whether your choice
of checker is appropriate.

3.2. Choosing the project
Besides its size, the main requirement of the project is that it should perform some indexed ac-
cess to arrays or strings data, so that the annotations of the index checker can be meaningfully
used to check absence of out of bound errors.

Here are a few examples of suitable projects used by students of previous years. You may
want to look for projects of similar size, complexity, and characteristics. As usual, you should
do your own analysis independent of the other students’.

• https://github.com/zxing/zxing

• https://github.com/Simmetrics/simmetrics

• https://github.com/TheAlgorithms/Java

• https://github.com/vbohush/SortingAlgorithmAnimations

• https://github.com/phishman3579/java-algorithms-implementation

3.3. Warnings
The Checker Framework may generate a large number of warnings for a project. In this case,
you do not have to address all of them but only up to 30 warnings in the whole project. If
you only address a subset of all warnings reported by the Checker Framework, discuss in the
report how you selected the warnings to address, and motivate your selection.

3.4. Annotations
Checkers require “specification” annotations to perform any meaningful analysis; some anno-
tations are implicitly assumed whereas others have to be written out explicitly. In particular,
the index checker may miss some checks unless you annotate all variables that are used by the
program as indexes of some arrays or strings. Obviously, you cannot make your project triv-
ially pass checks by simply not adding any meaningful annotations. Instead, start by adding

3

https://github.com/zxing/zxing
https://github.com/Simmetrics/simmetrics
https://github.com/TheAlgorithms/Java
https://github.com/vbohush/SortingAlgorithmAnimations
https://github.com/phishman3579/java-algorithms-implementation


some basic annotations that encode the expected properties of the main methods and fields.
Then, running the checker will report errors, which you can remove by adding more type
annotations in a way that documents the properties of intermediate values in the overall com-
putation.

Try to write annotations consistently within each piece of code that implements a certain
functionality. For example, if a method processes an array a, make sure to annotate all vari-
ables that are used as indexes of a within the method’s body. If you only annotate some
and ignore others, the checker will lack necessary information to correctly reason about the
method’s array accesses correctness, which typically leads to reporting many spurious warn-
ings.

For the index checker, note that annotations about an array’s content go between the array’s
base type and the square brackets. For example, int @ArrayLen(7) [] a declares an integer
array a of length 7. In contrast, annotations about each individual element of the array (that is,
about the array’s base type) go before the base type itself. For example, @Positive int [] b

declares an array b of positive integers. Of course, you can combine both kinds of annotations
– about an array and its base type – in the same declaration.

3.5. Modifying the implementation
As much as possible, you should not change the implementation of your project but only add
type annotations for the Checker Framework to work. This is in contrast with what you did
for Assignment 2, where you had to modify the implementation to fix true positive warnings;
in this Assignment 3, you have to add type annotations to reflect actual program behavior.

Remember that type checking has only the limited information about the program state
that is expressed by means of type annotations, which limits its reasoning capabilities about
program behavior. It’s quite possible that, also due to limitations of the Checker Framework,
you will not be able to express all necessary annotations to make type checking succeed in all
cases even if the program is actually correct (i.e., it does not incur any out of bound errors).
One of the goals of this exercise is to make you understand the extended type checking’s
limitations, and how to work around them.

Sometimes, you may have to add @SuppressWarning annotations to bypass typechecking
errors in parts of the code where the type correctness properties are first established. Use
@SuppressWarning judiciously and only when it is strictly necessary; and add a comment
next to each @SuppressWarning explaining why you had to use that annotation.

An alternative to @SuppressWarning is adding an assert(P) with an @AssumeAssertion

annotation in the assert’s message. In this case, the asserted predicate P should character-
ize the information about the program state at that location, in a way that justifies why the
following type annotation is correct; correspondingly, @AssumeAssertion tells the Checker
Framework to assume P and use that information to discharge constraints of the given checker
(for example @AssumeAssertion(nullness) for the nullness checker).

As a last resort, you may have to modify the implementation to be able to successfully pass
the checks. Where and how you used @SuppressWarning and @AssumeAssertion – and where
and how you modified the implementation – are interesting aspects to discuss in the report.

4

https://checkerframework.org/manual/#assumeassertion


3.6. What to write in the report
Topics that can be discussed in the report include:

• The choice of project – in particular, why it is a good candidate to apply the index
checker.

• If you used a checker other than the index checker, why you selected it.

• A high-level description of the process you followed to add type annotations to the
project.

• How many type annotations you included, and what kinds of properties they specify.

• Which features (if any) required a @SuppressWarning and why.

• Which features (if any) required to modify the implementation and why.

• Did using the checker help you find any bugs or other questionable design and imple-
mentation choices?

• How complex was it to apply the checker, and what benefits did you gain in return?

• Compare the checker’s trade-off between complexity of usage and analysis power to
that of other software analysis techniques you’re familiar with (in particular, those used
in previous assignments).

4. How and what to turn in
Turn in:

1. The following artifacts in a project named Assignment3 in your assigned GitLab project
for Software Analysis.2

a) Your annotated project (including all annotations necessary to pass the Checker-
Framework’s index checker analysis)

b) A shell script or build configuration file (such as a Maven pom.xml file, or just
a simple Makefile) that compiles the project with all dependencies, and runs the
Checker Framework’s index checker on it

The scripts can assume that the Checker Framework, a Java 11 and/or Java 17 JDK
compiler, and Maven and/or Gradle are available as in the environment provided by the
Docker image bugcounting/satools:y23; any other dependency must be included or
pulled by the build script. Make sure the build process works without problems: if it
does not run effortlessly, your submission may not be accepted or lose points.

2. The report in PDF format as a single file using iCorsi under Assignment 3.

2The same project you used for the previous assignments; see details in Assignment 1’s description.

5



A. Installing and Using the Checker Framework
The rest of this section gives some instructions on how to run the Checker Framework with
common tools, and includes specific pointers to the official documentation.

A.1. Modules
If your project uses modules (which have been available since Java 9), the source code will
include a file module-info.java. To make the modules of the Checker Framework and your
project’s be able to access each other, add the line requires org.checkerframework.checker.qual;

to the project’s module-info.java.

A.2. Using the Command Line
If you are compiling your project directly from the command line, the simplest way to use the
Checker Framework is through its wrapper script of the Java compiler, which is available as
command javacheck in the Docker image bugcounting/satools:y23. To replicate that be-
havior in your installation see the instructions at https://checkerframework.org/manual/
#javac-wrapper.

To use the index checker from the command line, you pass option -processor index to
javacheck.

The Docker image uses javac and java of Java 11 by default. To use Java 17 instead, you
can run the command java_version 17 (java_version 11 switches back to Java 11).

A.3. Using Maven
If your project compiles using Maven, follow the instructions at: https://checkerframework.
org/manual/#maven. Be aware that those instructions mix up instructions for different Java
versions. If you are using Java 11 or later, you can skip step 2 in those instructions.

Also note that those instructions enable the nullness checker. To enable the index checker
instead, replace:

<annotationProcessor>org.checkerframework.checker.nullness.NullnessChecker</annotationProcessor>

in the profile definitions in step 3 with the following:
<annotationProcessor>org.checkerframework.checker.index.IndexChecker</annotationProcessor>

A complete pom.xml using these build directives is available here in the Checker Frame-
work’s source code.

A.4. Using IntelliJ
If your project compiles with Maven, you don’t need to configure anything specific in In-
telliJ since you will just call Maven for compilation. If you want to compile your project
directly within IntelliJ (without passing through Maven), follow the instructions at https:
//checkerframework.org/manual/#intellij.

6

https://checkerframework.org/manual/#javac-wrapper
https://checkerframework.org/manual/#javac-wrapper
https://checkerframework.org/manual/#maven
https://checkerframework.org/manual/#maven
https://github.com/typetools/checker-framework/blob/master/docs/examples/MavenExample/pom.xml
https://checkerframework.org/manual/#intellij
https://checkerframework.org/manual/#intellij


A.5. Importing annotations
The typing annotations of each checker you use in your project must be imported in every class
where they are actually used. For example, to use the index checker’s annotation @IndexFor

import it with:

import org.checkerframework.checker.index.qual.IndexFor;

The fully qualified name of annotations is available in the API documentation.

7

https://checkerframework.org/api/

	The assignment
	Tools and documentation
	Plagiarism policy
	ChatGPT & Co.


	Tips and suggestions
	Checkers
	Choosing the project
	Warnings
	Annotations
	Modifying the implementation
	What to write in the report

	How and what to turn in
	Installing and Using the Checker Framework
	Modules
	Using the Command Line
	Using Maven
	Using IntelliJ
	Importing annotations


