
Assignment 3 – Software Analysis
Extended Java Typechecking

Claudio Maggioni

1 Project selection

The assignment description requires to find a project with more than 1000 lines of code making
significant use of arrays or strings.
Given these requirements, I decide to analyze the Apache Commons Text project in the GitHub
repository apache/commons-text.

1.1 The Apache Commons Lang Project

The Apache Commons family of libraries is an Apache Software Foundation1 sponsored collection
of Java libraries designed to complement the standard libraries of Java. The Apache Commons
Text project focuses on text manipulation, encoding and decoding of Strings and CharSequence-
implementing classes in general.
All the source and test classes are contained within in the package org.apache.commons.text or in
a sub-package of that package. For the sake of brevity, this prefix is omitted from now on when
mentioning file paths and classes in the project.
I choose to analyze the project at the git commit 78fac0f157f74feb804140613e4ffec449070990 as
it is the latest commit on the master branch at the time of writing.
To verify that the project satisfies the 1000 lines of code requirement, I run the cloc tool. Results
are shown in table 1. Given the project has more than 29,000 lines of Java code, this requirement is
satisfied.

Language Files Blank Comment Code
Java 194 5642 18704 26589
XML 16 205 425 1370
Text 6 194 0 667
Maven 1 23 24 536
YAML 6 39 110 160
Markdown 4 40 106 109
Velocity Template Language 1 21 31 87
CSV 1 0 0 5
Properties 2 2 28 5
Bourne Shell 1 0 2 2
Total 232 6166 19430 29530

Table 1: Output of the cloc tool for the Apache Commons Text project at tag 78fac0f1 (before refac-
toring is carried out).

1https://apache.org/

1

https://github.com/apache/commons-text
https://apache.org/


2 Running the CheckerFramework Type Checker

The relevant source code to analyze has been copied to the directory sources in the assignment repos-
itory

usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-3

on gitlab.com. The Maven build specification for the project has been modified to run the Check-
erFramework extended type checker (version 3.33.0) as an annotation processor to be ran on top of
the Java compiler. Both source code and test code is checked with the tool for violations, which are
reported with compilation warnings. To run the type checker simply run:

mvn clean compile

in a suitable environment (i.e. with JDK 1.8 or greater and Maven installed). To additionally run the
Apache Commons Text test suite and enable assert assertions (later useful for CheckerFramework
@AssumeAssertion(index) assertions) simply run:

env MAVEN_OPTS="-ea" mvn clean test

The state of the assignment repository when the type checker was first ran successfully is pinned by the
git tag before-refactor. A copy of the CheckerFramework relevant portion of the compilation output
at that tag is stored in the file before-refactor.txt.
No CheckerFramework checkers other than the index checker is used in this analysis as the code in
the project mainly manipulates strings and arrays and a significant number of warnings are generated
even by using this checker only..

3 Refactoring

Warning type Before refactoring After refactoring
argument 254 241
array.access.unsafe.high 130 117
array.access.unsafe.high.constant 31 28
array.access.unsafe.high.range 22 22
array.access.unsafe.low 59 58
array.length.negative 3 3
cast.unsafe 2 2
override.return 12 12
Total 513 483

Table 2: Number of CheckerFramework Type Checker warnings by category before and after refactor-
ing.

Table 2 provides a summary on the extent of the refactoring performed in response to index checker
warnings across the Apache Commons Text project. In total, 513 warnings are found before refactor-
ing, with 30 of them later being extinguished by introducing annotations and assertions in the code
in the following classes:

2

https://gitlab.com/usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-3


• AlphabetConverter
• StringSubstitutor
• similarity.LongestCommonSubsequence
• translate.AggregateTranslator
• translate.CharSequenceTranslator

• translate.CodePointTranslator
• translate.CsvTranslators
• translate.JavaUnicodeEscaper
• translate.SinglePassTranslator
• translate.UnicodeEscaper

Listing 1 Method toMillisInt(Duration) of class time.DurationUtils in Apache Commons Lang 3.12.0.
139 public static int toMillisInt(final Duration duration) {
140 Objects.requireNonNull(duration, "duration");
141 // intValue() does not do a narrowing conversion here
142 return LONG_TO_INT_RANGE.fit(Long.valueOf(duration.toMillis())).intValue();
143 }

4 Conclusions

Did using the checker help you find any bugs or other questionable design and implementation choices?
¿ no bugs found, couple of design choices
How complex was it to apply the checker, and what benefits did you gain in return?
¿ not so complex, lots of false positives
Compare the checker’s trade-off between complexity of usage and analysis power to that of other
software analysis techniques you’re familiar with (in particular, those used in previous assignments).

3


	Project selection
	The Apache Commons Lang Project

	Running the CheckerFramework Type Checker
	Refactoring
	Conclusions

