
Assignment 3 – Software Analysis
Extended Java Typechecking

Claudio Maggioni

1 Project selection

The assignment description requires to find a project with more than 1000 lines of code making
significant use of arrays or strings.
Given these requirements, I decide to analyze the Apache Commons Text project in the GitHub
repository apache/commons-text.

1.1 The Apache Commons Lang Project

The Apache Commons family of libraries is an Apache Software Foundation1 sponsored collection
of Java libraries designed to complement the standard libraries of Java. The Apache Commons
Text project focuses on text manipulation, encoding and decoding of Strings and CharSequence-
implementing classes in general.
All the source and test classes are contained within in the package org.apache.commons.text or in
a sub-package of that package. For the sake of brevity, this prefix is omitted from now on when
mentioning file paths and classes in the project.
I choose to analyze the project at the git commit 78fac0f157f74feb804140613e4ffec449070990 as
it is the latest commit on the master branch at the time of writing.
To verify that the project satisfies the 1000 lines of code requirement, I run the cloc tool. Results
are shown in table 1. Given the project has more than 29,000 lines of Java code, this requirement is
satisfied.

Language Files Blank Comment Code
Java 194 5642 18704 26589
XML 16 205 425 1370
Text 6 194 0 667
Maven 1 23 24 536
YAML 6 39 110 160
Markdown 4 40 106 109
Velocity Template Language 1 21 31 87
CSV 1 0 0 5
Properties 2 2 28 5
Bourne Shell 1 0 2 2
Total 232 6166 19430 29530

Table 1: Output of the cloc tool for the Apache Commons Text project at tag 78fac0f1 (before refac-
toring is carried out).

1https://apache.org/

1

https://github.com/apache/commons-text
https://apache.org/

2 Running the CheckerFramework Type Checker

The relevant source code to analyze has been copied to the directory sources in the assignment repos-
itory

usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-3

on gitlab.com. The Maven build specification for the project has been modified to run the Check-
erFramework extended type checker (version 3.33.0) as an annotation processor to be ran on top of
the Java compiler. Both source code and test code is checked with the tool for violations, which are
reported with compilation warnings. To run the type checker simply run:

mvn clean compile

in a suitable environment (i.e. with JDK 1.8 or greater and Maven installed). To additionally run the
Apache Commons Text test suite and enable assert assertions (later useful for CheckerFramework
@AssumeAssertion(index) assertions) simply run:

env MAVEN_OPTS="-ea" mvn clean test

Apache Commons Text includes classes that have been deprecated. As changing the interface and
behaviour of these classes would be useless, as alternatives to them exist in the library already, I choose
to ignore them while refactoring by adding a @SuppressWarning annotation in each of them. The state
of the assignment repository after the deprecated classes are annotated and when the type checker
was first ran successfully is pinned by the git tag before-refactor. A copy of the CheckerFramework
relevant portion of the compilation output at that tag is stored in the file before-refactor.txt.
No CheckerFramework checkers other than the index checker is used in this analysis as the code in
the project mainly manipulates strings and arrays and a significant number of warnings are generated
even by using this checker only..

3 Refactoring

Warning type Before refactoring After refactoring
argument 254 241
array.access.unsafe.high 130 117
array.access.unsafe.high.constant 31 28
array.access.unsafe.high.range 22 22
array.access.unsafe.low 59 58
array.length.negative 3 3
cast.unsafe 2 2
override.return 12 12
Total 513 483

Table 2: Number of CheckerFramework Type Checker warnings by category before and after refactor-
ing, ignoring deprecated classes.

Table 2 provides a summary on the extent of the refactoring performed in response to index checker
warnings across the Apache Commons Text project. In total, 513 warnings are found before refactor-
ing, with 30 of them later being extinguished by introducing annotations and assertions in the code
in the following classes:

2

https://gitlab.com/usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-3

• AlphabetConverter
• StringSubstitutor
• similarity.LongestCommonSubsequence
• translate.AggregateTranslator
• translate.CharSequenceTranslator

• translate.CodePointTranslator
• translate.CsvTranslators
• translate.JavaUnicodeEscaper
• translate.SinglePassTranslator
• translate.UnicodeEscaper

The strategy I adopt to perform the refactoring is based on the compiler errors thrown on the original
code. In every flagged statement I attempt to find the root cause of the warning and eliminate it with
either extended type qualifier annotations or assertions when adding only the former fails.
Instead of using @SuppressWarning annotations I choose to use @AssumeAssertion-annotated as-
sertions as I aim to use the existing Commons Text test suite to aid in finding incorrectly-placed
annotations. As mentioned before in the report, I run the test suite of the project by enabling asser-
tions and I verify that all tests still pass and no AssertionErrors are thrown.
In total, the refactor consists in the placement of 16 extended type qualifiers and 14 assertions. A
more detailed description of salient refactoring decisions taken to extinguish the warnings follows.

3.1 Class AlphabetConverter

387 for (int j = 0; j < encoded.length();) {
388 final int i = encoded.codePointAt(j);
389 final String s = codePointToString(i);
390

391 if (s.equals(originalToEncoded.get(i))) {
392 result.append(s);
393 j++; // because we do not encode in Unicode extended the
394 // length of each encoded char is 1
395 } else {
396 if (j + encodedLetterLength > encoded.length()) {
397 throw new UnsupportedEncodingException("Unexpected end "
398 + "of string while decoding " + encoded);
399 }
400 final String nextGroup = encoded.substring(j,
401 j + encodedLetterLength);

Here the substring(...) call at line 151 is flagged by CheckerFramework warning the start and
end index may be negative and that the start index may be greater than the end index. As the
attribute encodedLetterLength is positive according to the contract of the class constructor and j is
only incremented in the for loop or by a factor of encodedLetterLength, the code is correct. After
introducing a @Positive annotation on the declaration of j and an assert encodedLength > 0 after
line 395, CheckerFramework agrees with my judgement.

3.2 Class StringSubstitutor

910 /** [...]
911 * @throws IllegalArgumentException if variable is not found when its allowed to

throw exception↪→

912 * @throws StringIndexOutOfBoundsException if {@code offset} is not in the
913 * range {@code 0 <= offset <= source.length()}
914 * @throws StringIndexOutOfBoundsException if {@code length < 0}

3

915 * @throws StringIndexOutOfBoundsException if {@code offset + length >
source.length()}↪→

916 */
917 public String replace(final String source, final int offset, final int length) {
918 if (source == null) {
919 return null;
920 }
921 final TextStringBuilder buf = new TextStringBuilder(length).append(source,

offset, length);↪→

922 if (!substitute(buf, 0, length)) {
923 return source.substring(offset, offset + length);
924 }
925 return buf.toString();
926 }

The implementation of method replace is flagged by the extended type checker as the indices offset
and length are not bound checked against the string source. As the unsafe behaviour of the method
is documented in its javadoc with appropriate @throws clauses, I simply add this implied preconditions
to the method’s contract by using extended type qualifiers:

public String replace(final String source,
final @IndexOrHigh("#1") int offset,
final @NonNegative @LTLengthOf(value = "#1", offset = "#2 -

1") int length)↪→

3.3 Class translate.CharSequenceTranslator and implementors

Apache Commons Text provides the aforementioned abstract class implementation as a template
method of sorts for expressing text encoding and decoding algorithms. The class essentially provides
facilities to scan UTF-16 code points sequentially, and delegating the translation of each code point
to the implementation of the abstract method:

public abstract int translate(CharSequence input, int index, Writer writer) throws
IOException;↪→

CheckerFramework gives some warnings about some of the implementations of this method, highlight-
ing that they assume the input CharSequence is non-empty and the index parameter is a valid index
for the string.
Even if the method is public, I choose to interpret this hierarchy to mainly be a template method
pattern, with high coupling between the algorithm in the abstract class and each abstract method
implementation. Given this, I decide to restrict the method’s precondition to highlight conditions
already provided by the caller algorithm, namely the length and index constraints provided by Check-
erFramework.
The new signature of the abstract method is this:

public abstract int translate(@MinLen(1) CharSequence input,
@NonNegative @LTLengthOf("#1") int index,
Writer writer) throws IOException;

As some methods have a more forgiving implementation, and a broader child method argument type
from a more restrictive parent type does not break the rules of inheritance (thanks to contravariance), I
choose to propagate the extended type annotations only when needed and avoid introducing additional
preconditions to more tolerant implementations of the template method.

4

3.4 Class translate.SinglePassTranslator and implementors

SinglePassTranslator is one of the implementor classes of the aforementioned CharSequenceTranslator
template method. However, the class is itself a template method pattern “for processing whole input
in single pass”2, i.e. essentially performing an abstraction inversion of the codepoint-by-codepoint
algorithm in CharSequenceTranslator by implementing the encoding or decoding process in a single
go.
The class immediately delegates the implementation of the translation algorithm to the abstract
package-private method:

abstract void translateWhole(CharSequence input, Writer writer) throws IOException;

and requires callers of the public implementation of translate to call it with index equal to 0.
I simply propagate the non-empty extended type annotation on input (i.e. @MinLen(1)) on this new
abstract method and implementors.
The translate.CsvTranslators$CsvUnescaper implementation of this new template method requires
additional attention to extinguish all CheckerFramework’s index checker warnings.

60 void translateWhole(final @MinLen(1) CharSequence input, final Writer writer) throws
IOException {↪→

61 // is input not quoted?
62 if (input.charAt(0) != CSV_QUOTE || input.charAt(input.length() - 1) !=

CSV_QUOTE) {↪→

63 writer.write(input.toString());
64 return;
65 }
66

67 // strip quotes
68 final String quoteless = input.subSequence(1, input.length() - 1).toString();

Here CheckerFramework was unable to deduce that the input.length() - 1 indeed results in a safe
index for input as the CharSequence is always non-empty (as specified with the propagated type
qualifiers from the abstract signature of translateWhole). This warning is fixed by precomputing
the last index of the string and introducing a trivially true assertion on it:

60 void translateWhole(final @MinLen(1) CharSequence input, final Writer writer) throws
IOException {↪→

61 final int lastIndex = input.length() - 1;
62

63 assert lastIndex >= 0 : "@AssumeAssertion(index): input.length() is >= 1 by
contract";↪→

64

65 // is input not quoted?
66 if (input.charAt(0) != CSV_QUOTE || input.charAt(lastIndex) != CSV_QUOTE) {
67 writer.write(input.toString());
68 return;
69 }
70

71 // strip quotes
72 final String quoteless = input.subSequence(1, lastIndex).toString();

2According to the class javadoc description.

5

4 Conclusions

As evidenced by the Apache Common Text test suite and the previous section of this report, no
changes in the implementation behaviour are introduced in the code by the refactor. Only extended
type annotations and assertions (that hold when executing the test suite) are added to the code.
Did using the checker help you find any bugs or other questionable design and implementation choices?
¿ no bugs found, couple of design choices
How complex was it to apply the checker, and what benefits did you gain in return?
¿ not so complex, lots of false positives
Compare the checker’s trade-off between complexity of usage and analysis power to that of other
software analysis techniques you’re familiar with (in particular, those used in previous assignments).

6

	Project selection
	The Apache Commons Lang Project

	Running the CheckerFramework Type Checker
	Refactoring
	Class AlphabetConverter
	Class StringSubstitutor
	Class translate.CharSequenceTranslator and implementors
	Class translate.SinglePassTranslator and implementors

	Conclusions

