
Assignment 4 – Software Analysis
Model checking with Spin

Claudio Maggioni

1 Introduction

This assignment consists in using model checking tecniques to verify the correctness of the algorithm
implemented in an existing program. In particular, a sequential and a multi-threaded implementation
of a array-reversing Java utility class implementation are verified to check correctness of both reversal
procedures, consistency between the results they produce and for absence of race conditions.
To achieve this I use the Spin model checker [2] to write an equivalent finite state automaton imple-
mentation of the algorithm using the ProMeLa specification and define linear temporal logic (LTL)
properties to be automatically verified.
This report covers the definition of the model to check and the necessary LTL properties to verify
correctness of the implementation, and additionally presents a brief analysis on the performance of
the automated model checker.

2 Model definition

In this section I define the ProMeLa code which implements a FSA model of the Java implementation.
The model I define does not match the exact provided Java implementation, but aims to replicate the
salient algorithmic and concurrent behaviour of the program.
Due to the way I implement the LTL properties in the following section, I decide to implement the
model as a GNU M4 macro processor [1] template file. Therefore, the complete model can be found
in the path ReverseModel/reversal.pml.m4 in the assignment repository

usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-4

on gitlab.com.
As suggested by the assignment description, I define some preprocessor constants to allow for altering
some parameters. As mentioned above, I use GNU M4 instead of the regular ProMeLa preprocessor
to implement these definitions. Specifically, I define the following properties:

N, which represents the number of parallel threads spawned by the parallel reverser;
LENGTH, which represents the length of the array to reverse;
R, which represents the upper bound for the random values used to fill the array to reverse, the lower

bound of them being 0.

The variable values are injected as parameters of the m4 command, so no definition is required in the
model code.
Then by using these values the model specification declares the following global variables:

int to_reverse[LENGTH];
int reversed_seq[LENGTH];
int reversed_par[LENGTH];
bool done[N + 1];
bool seq_eq_to_parallel = true;

1

https://gitlab.com/usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-4


to reverse is the array to reverse, and reverse seq and reverse par are respectively where the
sequential and parallel reverser store the reversed array. The done array stores an array of boolean
values: done[0] stores whether the sequential reverser has terminated, and each done[i] for 1 ≤
i ≤ N stores whether the i-th spawned thread of the parallel reverser has terminated (consequently,
since threads are joined in order, when done[N] == true the parallel reverser terminates). Finally
seq eq to parallel is set to false when an incongruence between reversed seq and reversed par
is found after termination of both reversers.
The body of the model is structured in the following way:

init {
{ /* array initialization */ }
{ /* sequential reverser algorithm */ }
{ /* parallel reverser algorithm */ }
{ /* congruence check between reversers */ }

}

Each of the enumerated sections is surrounded by curly braces to emulate the effect of locally scoped
variables in procedures, which do not exist in ProMeLa aside the cuncurrency-like proctype construct.
The citation [3]. The citation [2].

References
[1] Free Software Foundation. GNU M4 - GNU macro processor. Version 1.4.6. May 29, 2021. url:

https://www.gnu.org/software/m4/manual/index.html.
[2] Gerard J. Holzmann. Spin model checker. Version 6.5.2. Dec. 6, 2019. url: https://spinroot.

com/spin/whatispin.html.
[3] Ole Tange. GNU Parallel 20230422 (’Grand Jury’). GNU Parallel is a general parallelizer to

run multiple serial command line programs in parallel without changing them. Apr. 2023. doi:
10.5281/zenodo.7855617. url: https://doi.org/10.5281/zenodo.7855617.

2

https://www.gnu.org/software/m4/manual/index.html
https://spinroot.com/spin/whatispin.html
https://spinroot.com/spin/whatispin.html
https://doi.org/10.5281/zenodo.7855617
https://doi.org/10.5281/zenodo.7855617


0 50 100 150 200 250 300
CPU time (seconds)

2

3

4

5

6

7

8

9

10

Va
lu

e
of

N

0 20 40 60 80 100
Timeouts (%)

2

3

4

5

6

7

8

9

10

Va
lu

e
of

N

(a) Variable N

0 50 100 150 200 250 300
CPU time (seconds)

3

4

5

6

7

8

9

10

Va
lu

e
of

LE
N

G
T

H

0 20 40 60 80 100
Timeouts (%)

3

4

5

6

7

8

9

10

Va
lu

e
of

LE
N

G
T

H

(b) Variable LENGTH

0 50 100 150 200 250 300
CPU time (seconds)

2

3

4

5

6

7

8

9

10

Va
lu

e
of

R

0 20 40 60 80 100
Timeouts (%)

2

3

4

5

6

7

8

9

10

Va
lu

e
of

R

(c) Variable R

Figure 1: Distribution of CPU time and percentage of timeouts (i.e. executions with a real execution
time greater than 5 minutes, discarded for sake of time) for different executions of the model
checker for different parameters of N, LENGTH and R.

3


	Introduction
	Model definition

