
Assignment 4:
Model checking with Spin

Software Analysis

Due date: 2023-05-16 at 23:00

1 The assignment
Your assignment in a nutshell:

1. Write ProMeLa finite-state models of a program that reverses the elements of an array
a in parallel, and of a program that reverses them sequentially.

2. Write LTL properties that express correctness and other properties of the programs’
behavior.

3. Run Spin on the model to verify which properties hold and which don’t. For the prop-
erties that don’t verify, explain the counterexample found by Spin and what scenario it
represents at a high level.

4. Write a short report discussing your work.
Maximum length of the report: 8 pages (A4 with readable formatting).

The assignment must be done individually.
This assignment contributes to 25% of your overall grade in the course.

1.1 Reversing: sequentially and in parallel
In this assignment, we are modeling a basic piece of functionality: reversing the content of an
integer array a while copying it into another array r.1 In sequential programming, this is done
simply with a loop:

1We are assuming that the length of a is the same as the length of r.

1

void reverse(int[] a, int[] r) {

for (int k = 0; k < a.length; k++)

r[a.length - k - 1] = a[k];

}

On the other hand, if we have N threads T0, T1, . . . , TN−1 that can work in parallel, we
can ideally2 speed-up the computation by assigning to different threads different portions of
arrays a and r. To distribute the computation evenly, each thread processes S = a.length/N
contiguous elements of the array. Precisely, for each 0 ≤ k < N , thread Tk processes the
elements of a from index k · S included to index k · S + S excluded. The last thread TN−1

may have to take care of all remaining elements; if a.length is not exactly divisible by N ,
these will be more than S. For example, if a.length is 13 and N is 4, threads T0, T1, T2 get
3 = 13/4 elements each, which leaves T3 with the trailing 4 elements.

Once all N threads have processed their array portions, r’s content should be the same as
after calling the sequential method reverse shown above on the same initial array.

If you find it helpful, in iCorsi (under Assignment 4) you can download an example Java im-
plementation of sequential and parallel reversal methods, which fully implement the informal
description of this section.

1.2 ProMeLa model
The first step of this assignment is writing a ProMeLa model that captures the behavior de-
scribed above. Precisely, there should be a process that reverses an array a sequentially and
writes the reversed array into an array r_s, and another, separate, one that spawn N worker
threads to reverse the same array a in parallel and writes into a separate array r_p. This
way, since the sequential and parallel processes write to two different arrays a_s and a_p, and
the parallel subprocesses modify disjoint portions of a_p, we don’t have to worry about race
conditions.

Your ProMeLa model need not replicate the example Java implementation in every detail;
the key aspect is the allocation of work to threads, which has to follow the description above.
The details of how threads map to ProMeLa processes, and how processes synchronize, can be
equivalently modeled in different ways – using message passing and channels, shared global
variables, or a combination of both.

It is important that the ProMeLa model allows a level of inter-process concurrency that
accurately models the actual Java threaded execution (see the example Java implementation
available in iCorsi). In particular, since different Java threads work on disjoint sections of the
output arrays, the corresponding ProMeLa processes should be allowed to interleave freely
with the other processes; they should not use unnecessary “locks” (such as atomic blocks in
ProMeLa) within their main body or be forced to execute in a fixed order.

The model should be parametric with respect to the number N of threads and the size
LENGTH of arrays a, a_s, and a_p. To this end, you can use the #define preprocessor directive
to associate a value to N and LENGTH and to easily change it before each recompilation.

2Ideally, because the synchronization overhead may actually dominate the overall execution time.

2

An important aspect to make the model realistic is the initialization of input array a’s con-
tent. In ProMeLa, an array int a[LENGTH] is initialized to all zeros by default. If we analyzed
a model where a is not modified after this default initialization, we would just verify the case
of reversing an array with all zeros, which is a very narrow verification result.

To have a meaningful model, we have to explicitly initialize the array a to nondeterministic
integer values. ProMeLa offers the select statement to do this: select(v: 0 .. R) will
assign to v any value from 0 to R included. In this case Spin will verify all cases: one for each
value of v in that range. Make sure your ProMeLa model includes an explicit nondeterministic
initialization of a’s content using select before the sequential and parallel processes execute.
In contrast, you do not need to explicitly initialize the output arrays a_s and a_p, since they
will be entirely overwritten by the sequential and parallel processes.

1.3 LTL properties
Formalize the following properties in LTL:

1. once the sequential and parallel computations have terminated, the content of a_s and
a_p is the same

2. the sequential and parallel computations eventually terminate

In addition, formalize another two LTL properties of your choice:

3. one property should be verified by the ProMeLa model

4. one property should be violated by the ProMeLa model (that is, Spin should find a
counterexample)

To fully express property 1. above, you will have to add an element-by-element check to
your ProMeLa model, which runs after the sequential and parallel computations have termi-
nated and compares a_s to a_p element by element. Alternatively, you could express a partial
correctness property, which only compares some elements of a_s and a_p (this would be a
weaker property, which may be reflected in your grade for the assignment).

1.4 Verification with Spin
Once you have built the ProMeLa model and formalized the four LTL properties, run Spin to
verify the model against each property in turn.

The model’s parameters N (number of threads), LENGTH (length of array a), and R (range of
integer values that are stored in a) will greatly affect the time it takes to run Spin. Start with
small numbers (for example: N = 2, LENGTH = 3, and R = 2) to ensure that everything works
as expected. Once it does, you can increment the numbers gradually and see how far you can
push them before you run out of memory and/or time (and with consistent verification results).

For the properties that don’t verify, analyze the counterexample trace produced by Spin and
explain it in terms of program behavior:

3

• At what point of the computation does the counterexample violate the property?

• Does the property violation depend on the values of parameters N, LENGTH, and R?

• Does the property violation indicate some genuine issues of the modeled program, or is
the property just too restrictive?

• When the violated property is too restrictive, can you modify it (relax it) so that it still
captures the same aspect of program behavior but becomes verified?

These aspects can be discussed in the report.

2 Tool and documentation

2.1 How to use Spin
You can use Spin in a Docker container using the image bugcounting/satools:y23. A simple
GUI is available by calling ispin. Otherwise, use the following basic sequence of commands
to run Spin on ProMeLa model model.pml with LTL property prop:

build the analyzer from the model

$ spin -a model.pml

compile the analyzer

$ gcc -Wno-format-overflow -o analyzer pan.c

run the analyzer, trying to verify property 'prop'

$./analyzer -a -N prop

When verification fails, the counterexample trace will be stored in model.pml.trail, and
can be analyzed with:

build the analyzer from the model

$ spin -k model.pml.trail model.pml

To make counterexample traces more readable, you may add printf statements at various
places in the ProMeLa model where it’s useful to keep track of the program’s evolution. Spin
ignores printf statements when performing verification, but it will execute them when re-
playing a single trace from a .trail file.

2.2 Documentation about Spin and ProMeLa
More information about Spin is available from the project’s website:

http://spinroot.com/

In addition to the examples that we have seen during the Spin tutorial in class (which are
included in the Docker image under examples/spin/), Spin’s basic manual is a good place to
become familiar with ProMeLa’s syntax (you can skip section Advanced Usage):

http://spinroot.com/spin/Man/Manual.html

4

http://spinroot.com/
http://spinroot.com/spin/Man/Manual.html

2.3 Spin’s output
Spin’s command-line output contains a lot of information and can be a bit overwhelming at
first. In this assignment, we are mainly interested in these kinds of errors that Spin may report:

assertion violated means that Spin found an execution (trace) of the ProMeLa model
that violates an assertion. A violated assertion can be either an explicit statement
assert (exp) in the code, or an implicit assertion generated by Spin to check an LTL
property P (declared in the ProMeLa code using an ltl block, or passed in negated
form on the command line with option -f). In the case of an LTL property, Spin some-
times refers to the violated property as a never claim, which is Spin’s name for what we
called the monitor of the negated property.

acceptance cycle means that Spin found an execution (trace) of the ProMeLa model that
continues indefinitely but never satisfies the property we’re trying to check. In this case,
the property is usually an LTL formula using the eventually or until operators. For
example, if we’re trying to verify <> p but there are executions where p never occurs,
Spin’s counterexample trace will show a cycle (loop) where p doesn’t happen and that
can repeat forever.

invalid end state means that Spin found an execution that deadlocks, that is where all pro-
cesses are stuck waiting for one other. In this case, you typically have to revise how
processes synchronize to ensure they can always make progress.

unreached states are locations of the ProMeLa model that Spin never executed. The pres-
ence of some unreached states is not necessarily an error, but if you find out that funda-
mental portions of your code don’t run at all, it probably means that process synchro-
nization is incorrect, and some processes are prevented from running as intended.

For a more detailed overview of properties and errors see these slides by Gerardo Schneider.

2.4 Plagiarism policy
You are allowed to learn from any examples that you find useful; however, you are required
to:

1. write down the solution completely on your own; and,

2. if there is a publicly available example that you especially drew inspiration from, credit
it in the report (explaining what is similar and how your solution differ).

Failure to do so will be considered plagiarism. (If you have doubts about the application of
these rules, ask the instructors before submitting your solution.)

5

https://www.uio.no/studier/emner/matnat/ifi/INF5140/v09/undervisningsmateriale/09-claims.pdf

2.4.1 ChatGPT & Co.

The plagiarism policy also applies to AI tools such as ChatGPT or CoPilot:

1. You are allowed to use the help of such tools; however, you remain entirely responsible
for the solution that you submit.

2. If you use any such tools, you must add a section to the report that mentions which tools
you used and for what tasks, how you checked the correctness and completeness of their
suggestions, and what modifications (if any) you introduced on top of the tool’s output.

3. If you use a text-based tool such as ChatGPT, also show a couple of examples of prompts
that you provided, with a summary of the tool’s response.

Failure to abide by these rules, including failing to disclose using AI tools, will be considered
plagiarism.

3 What to write in the report
Topics that can be discussed in the report include:

• A presentation of your ProMeLa model, with a discussion of how it relates to the “real”
implementation.

• A discussion of the two properties you chose, and the formalization in LTL of all four
LTL properties.

• Did you have to tweak the model to make it work as expected?

• How much could you increase the parameters N, LENGTH, and R without Spin blowing
up?

• Describe the counterexample Spin found for the violated LTL property 4. Is this coun-
terexample feasible in the “real” implementation?

• Were there any unexpected aspects of the program behavior that you discovered thanks
to Spin?

4 How and what to turn in
Turn in:

1. The following artifacts in a project named Assignment4 in your assigned GitLab project
for Software Analysis.3

3The same project you used for the previous assignments; see details in Assignment 1’s description.

6

a) Your ProMeLa model, including the four LTL properties described in Section 1.3.

b) A shell script file that runs Spin on the ProMeLa model and checks the four prop-
erties.

The script can assume that the executable spin and a C compiler (such as gcc) are
reachable within the path where the script is executed (as in the environment provided
by the Docker image bugcounting/satools:y23). Make sure the script works without
problems: if it does not run effortlessly, your submission may not be accepted or lose
points.

2. The report in PDF format as a single file using iCorsi under Assignment 4.

7

	The assignment
	Reversing: sequentially and in parallel
	ProMeLa model
	LTL properties
	Verification with Spin

	Tool and documentation
	How to use Spin
	Documentation about Spin and ProMeLa
	Spin's output
	Plagiarism policy
	ChatGPT & Co.

	What to write in the report
	How and what to turn in

