
Assignment 4 – Software Analysis
Model checking with Spin

Claudio Maggioni

1 Introduction

This assignment consists in using model checking tecniques to verify the correctness of the algorithm
implemented in an existing program. In particular, a sequential and a multi-threaded implementation
of a array-reversing Java utility class implementation are verified to check correctness of both reversal
procedures, consistency between the results they produce and for absence of race conditions.
To achieve this I use the Spin model checker [2] to write an equivalent finite state automaton imple-
mentation of the algorithm using the ProMeLa specification and define linear temporal logic (LTL)
properties to be automatically verified.
This report covers the definition of the model to check and the necessary LTL properties to verify
correctness of the implementation, and additionally presents a brief analysis on the performance of
the automated model checker.

2 Model definition

In this section I define the ProMeLa code which implements a FSA model of the Java implementation.
The model I define does not match the exact provided Java implementation, but aims to replicate the
salient algorithmic and concurrent behaviour of the program.
Due to the way I implement the LTL properties in the following section, I decide to implement the
model as a GNU M4 macro processor [1] template file. Therefore, the complete model can be found
in the path ReverseModel/reversal.pml.m4 in the assignment repository

usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-4

on gitlab.com.
As suggested by the assignment description, I define some preprocessor constants to allow for altering
some parameters. As mentioned above, I use GNU M4 instead of the regular ProMeLa preprocessor
to implement these definitions. Specifically, I define the following properties:

N, which represents the number of parallel threads spawned by the parallel reverser;
LENGTH, which represents the length of the array to reverse;
R, which represents the upper bound for the random values used to fill the array to reverse, the lower

bound of them being 0.

The variable values are injected as parameters of the m4 command, so no definition is required in the
model code.
Then by using these values the model specification declares the following global variables:

int to_reverse[LENGTH];
int reversed_seq[LENGTH];
int reversed_par[LENGTH];
bool done[N + 1];
bool seq_eq_to_parallel = true;

1

https://gitlab.com/usi-si-teaching/msde/2022-2023/software-analysis/maggioni/assignment-4


to reverse is the array to reverse, and reverse seq and reverse par are respectively where the
sequential and parallel reverser store the reversed array. The done array stores an array of boolean
values: done[0] stores whether the sequential reverser has terminated, and each done[i] for 1 ≤ i ≤ N
stores whether the i-th spawned thread of the parallel reverser has terminated. Consequently, since
threads are joined in order, when done[N] == true the parallel reverser terminates, an effect that is
exploited by the main model body implementation to wait for it. Finally seq eq to parallel is set
to false when an incongruence between reversed seq and reversed par is found after termination
of both reversers.
The body of the model is structured in the following way:

init {
{ /* array initialization */ }

/* sequential reverser algorithm */
run SequentialReverser();
/* parallel reverser algorithm */
run ParallelReverser();

(done[0] == true && done[N] == true);

{ /* congruence check between reversers */ }
}

Each of the enumerated sections is surrounded by curly braces to emulate the effect of locally scoped
variables in procedures, which do not exist in ProMeLa aside the concurrency emulating proctype
construct.
As requested by the assignment, the sequential and parallel reverser are implemented in a proctype
and spawned in parallel in the model. The two ProMeLa processes join before the congruence check
thanks to an “expression” statement waiting on the termination boolean array to signal that both
reversers have finished doing their job.
The array initialization is carried out as follows:

int i;
for (i in to_reverse) {

int value;
select(value: 0 .. R);
to_reverse[i] = value;
printf("to_reverse[%d]: %d\n", i, value);

}

As specified above, the array is initialized with values in [0, R]. Specifically, values are generated using
a nondeterministic select statement to allow the model checker to try all possible values efficiently.
The sequential reversed algorithm is implemented with the following code:

int k;
for (k: 0 .. (LENGTH - 1)) {

reversed_seq[LENGTH - k - 1] = to_reverse[k];
printf("reversed_seq[%d] = to_reverse[%d]\n", LENGTH - k - 1, k);

}
done[0] = true;

which is a direct translation of the Java implementation to verify.
The sequential reverser is used to implement each thread of the parallel reverser through the Threade-
dReverser class. In the model, the class is translated in a Spin process through the proctype construct

2



with the following implementation:

proctype ThreadedReverser(int from; int to; int n) {
printf("proc[%d]: started from=%d to=%d\n", n, from, to);
int k;
for (k: from .. (to - 1)) {

printf("reversed_par[%d] = to_reverse[%d]\n", LENGTH - k - 1, k);
reversed_par[LENGTH - k - 1] = to_reverse[k];

}
printf("proc[%d]: ended\n", n);
done[n] = true;

}

The implementation is closely related to the sequential one, as it differs only in reversed par being
used as the destination array and limiting the reversal between from and to. The argument n is used
to identify the thread in the done array to store the termination state. Following the indexing rules
of done given earlier, the i-th spawned thread corresponds to a proctype call with n = i, so that at
termination done[i] is set to true.
The actual thread-spawning part of the parallel reverser, i.e. class ParallelReverser itself, is represented
by the following ProMeLa code placed in the ParallelReverser proctype:

int n;
int s = LENGTH / N;
for (n: 0 .. (N - 1)) { // fork loop

int from = n * s;
int to;
if
:: (n == N - 1) -> to = LENGTH;
:: else -> to = n * s + s;
fi
run ThreadedReverser(from, to, n + 1); // fork here

}
for (n: 1 .. N) { // join loop

(done[n] == true); // join n-th thread here
printf("[%d] joined\n", n);

}

Here the values of n, s, from and to replicate exactly the values used in the Java implementation.
The n + 1 parameter identifies maps each proctype invocation to its place in the invocation order
(e.g. for n = 0, ThreadedReverser is called with n + 1 = 1, since this is the 1st invocation of the
process).
The second “join” loop waits for each process to complete in order of invocation, replication the thread
joining behaviour of the parallel reverser implementation in the Java program. Note that the ProMeLa
statement (done[n] == true); will “wait” for the value of done[n] to be true before executing the
following statement, thus being an adequate analogy for Thread.join().
Finally, the congruence check between the arrays produced by both implementation is implemented
with the following code:

int i;
for (i: 0 .. (LENGTH - 1)) {

if
:: (reversed_seq[i] != reversed_par[i]) -> seq_eq_to_parallel = false;
fi

}

3



Should any matching pair of elements be different, seq eq to parallel will be set to false. Note
that this boolean variable is used to implement one of the LTL properties, hence why it is declared
and set to a meaningful value in this block of the model.

2.1 LTL properties

In this section I cover the LTL property definitions I included in the model.

ltl seq_eq_parallel {
[] (seq_eq_to_parallel == true)

}

This LTL property definition checks that once both reversers have terminated, the content of the
respective reversed arrays they produce is the same. As discussed in the previous section, this variable
can only turn to false during the execution of the congruence check and only if a pair of array elements
of same index is indeed different. Therefore, if the program is correct, the value of the variable will
always be true.
Note that this property does not ensure termination of the program, at it relies on the congruence
check to eventually run at the end of the program. To ensure termination, I define the following LTL
property:

ltl termination {
<> (done[0] == true && done[N] == true)

}

This mirrors the wait statement introduced in the model code before the congruence check block, and
relies exactly in the same way on the termination boolean array. Note that the elements of the array
can only turn from false to true or not change at all, thus the property in the “eventually” operator
is actually always true after it becomes indeed true (i.e. the program cannnot un-terminate according
to the model).
I then define other two custom properties showcasing the powers of the M4 macro processor when
compared to the built-in ProMeLa one.

// ifelse(LTL, correctness_seq, `
ltl correctness_seq {

[] (done[0] == true -> (true for(`k', 0, LENGTH-1, ` &&
r_s[eval(LENGTH - k - 1)] == a[k]')))

}
// ', `')

This property checks if the array produced by the sequential reverser is indeed the reverse of the input
array. Note that the “polyglot” M4 sugar allows for the property to be arbitrairly unraveled based
on the value of LENGTH. Notice that to simplify the ProMeLa source code to compile for long array
lengths, thanks to the ifelse macro the property is omitted by M4 when the property is not actually
checked (because long LTL properties actually make the model fail to parse). Here is an example of
the unravelled property for LENGTH = 10:

ltl correctness_seq {
[] (done[0] == true -> (true &&

r_s[9] == a[0] &&
r_s[8] == a[1] &&
r_s[7] == a[2] &&
r_s[6] == a[3] &&
r_s[5] == a[4] &&
r_s[4] == a[5] &&

4



r_s[3] == a[6] &&
r_s[2] == a[7] &&
r_s[1] == a[8] &&
r_s[0] == a[9]))

}

Note that the use of true as the first condition after the implication is simply to allow for && to be
simply appended at the start of each condition.
In a similar fashion, I also define a property that is not generally true. The following LTL formula
specifies that when the second thread of the parallel reverser terminates, the section to be reversed
by the first thread is already reversed.

// ifelse(LTL, correctness_par, `
ltl correctness_par {

[] (done[2] == true -> (true for(`k', 0, LENGTH / N - 1, ` &&
r_p[eval(LENGTH - k - 1)] == a[k]')))

}
// ', `')

This property is clearly not generally true as the first thread may not complete the reversal process
before the second thread terminates due to concurrency.
Here is the counterexample Spin provides to show that the property does not hold for some executions
with N = 2, LENGTH = 3 and R = 2:

program start
a[0]: 1
a[1]: 0
a[2]: 0
sequential start
parallel start
r_s[2] = a[0]
r_s[1] = a[1]
r_s[0] = a[2]
proc[1]: started from=0 to=1
proc[2]: started from=1 to=3
thread [2]: r_p[1] = a[1]
thread [2]: r_p[0] = a[2]
proc[2]: ended

Indeed, the output shows that the second thread can terminate before the first does. Here, the first
thread (proc[1]) is just started but does not manage to execute r_p[2] = a[0] before the second
thread terminates. Indeed, this is a realistic counterexample that could be reproduced in the Java
program.
The citation [3].

References
[1] Free Software Foundation. GNU M4 - GNU macro processor. Version 1.4.6. May 29, 2021. url:

https://www.gnu.org/software/m4/manual/index.html.
[2] Gerard J. Holzmann. Spin model checker. Version 6.5.2. Dec. 6, 2019. url: https://spinroot.

com/spin/whatispin.html.

5

https://www.gnu.org/software/m4/manual/index.html
https://spinroot.com/spin/whatispin.html
https://spinroot.com/spin/whatispin.html


0 50 100 150 200 250 300
CPU time (seconds)

2

3

4

5

6

7

8

9

10

Va
lu

e
of

N

0 20 40 60 80 100
Timeouts (%)

2

3

4

5

6

7

8

9

10

Va
lu

e
of

N

(a) Variable N

0 50 100 150 200 250 300
CPU time (seconds)

3

4

5

6

7

8

9

10

Va
lu

e
of

LE
N

G
T

H

0 20 40 60 80 100
Timeouts (%)

3

4

5

6

7

8

9

10

Va
lu

e
of

LE
N

G
T

H

(b) Variable LENGTH

0 50 100 150 200 250 300
CPU time (seconds)

2

3

4

5

6

7

8

9

10

Va
lu

e
of

R

0 20 40 60 80 100
Timeouts (%)

2

3

4

5

6

7

8

9

10

Va
lu

e
of

R

(c) Variable R

Figure 1: Distribution of CPU time and percentage of timeouts (i.e. executions with a real execution
time greater than 5 minutes, discarded for sake of time) for different executions of the model
checker for different parameters of N, LENGTH and R.

6



[3] Ole Tange. GNU Parallel 20230422 (’Grand Jury’). GNU Parallel is a general parallelizer to
run multiple serial command line programs in parallel without changing them. Apr. 2023. doi:
10.5281/zenodo.7855617. url: https://doi.org/10.5281/zenodo.7855617.

7

https://doi.org/10.5281/zenodo.7855617
https://doi.org/10.5281/zenodo.7855617

	Introduction
	Model definition
	LTL properties


