
SIZING ROUTER BUFFERS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Guido Appenzeller

March 2005

c© Copyright by Guido Appenzeller 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Nick McKeown
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Balaji Prabhakar

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Dawson Engler

Approved for the University Committee on Graduate

Studies.

iii

Abstract

All Internet routers contain buffers to hold packets during times of congestion. Today,

the size of the buffers is determined by the dynamics of TCP’s congestion control

algorithms. To keep link utilization high, a widely used rule-of-thumb states that

each link needs a buffer of size B = RTT × C, where RTT is the average round-

trip time of a flow passing across the link, and C is the data rate of the link. For

example, a 10Gb/s router linecard needs approximately 250ms × 10Gb/s = 2.5Gbits

of buffers; and the amount of buffering grows linearly with the line-rate. Such large

buffers are challenging for router manufacturers, who must use large, slow, off-chip

DRAMs. And queueing delays can be long, have high variance, and may destabilize

the congestion control algorithms.

In this thesis we argue that the rule-of-thumb (B = RTT × C) is now outdated

and incorrect for backbone routers. This is because of the large number of flows (TCP

connections) multiplexed together on a single backbone link. Using theory, simulation

and experiments on a network of real routers, we show that a link with n long lived

flows requires no more than B = (RTT × C)/
√

n, for long-lived or short-lived TCP

flows.

The consequences on router design are enormous: A 2.5Gb/s link carrying 10,000

flows could reduce its buffers by 99% with negligible difference in throughput; and a

10Gb/s link carrying 50,000 flows requires only 10Mbits of buffering, which can easily

be implemented using fast, on-chip SRAM.

iv

Acknowledgements

Writing a thesis is not possible without the advice, support and feedback from re-

searchers, collaborators, colleagues and friends.

First and foremost I would like to acknowledge Nick McKeown. He not only had

an incredible instinct for suggesting a thesis topic that is both relevant to practitioners

and academically deep, he also mentored me through the process with critical feedback

and advice. It is hard to imagine a better advisor than Nick. I am very grateful to

him.

Isaac Keslassy was an invaluable collaborator and great fun to work with. He

kept asking the right questions at the right time, and provided major value with his

superiour mathematical background.

Matthew Holliman helped me with the early experiments and deserves credit for

being the first to suggest to look for a CLT based model. Many thanks go to Yashar

Ganjali, Sundar Iyer, Shang-Tse Chuang, Martin Casado, Rui Zhang and Nandita

Dukapi, Greg Watson, Ichiro Okajima and everyone else in the HPNG for discussions

of my results while they were being developed.

The experiemnts on the GSR would not have been possible without the help of

Joel Sommers and Paul Barford. Their expertise in setting up experiments with

physical routers was a huge help.

Balaji Prabhakar and members of his research group gave valuable feedback on

early results. I would also like to thank the other members of my orals comittee

Dawson Engler, Nick Bambos and David Cheriton for their hard questions, they

helped refine the written dissertation.

Early talks with Sally Floyd and Frank Kelly helped identify the issues and the

v

existing knowledge in buffer research. Their feedback on the final results was a major

step towards this work’s conclusions. I would also like to thank the reviewers of the

SIGCOMM article and specifically Craig Partridge for their valuable feedback.

Sunya Wang, Wayne Sung and Lea Roberts from the Stanford Networking team

were extremely helpful in implementing the experiments on the Stanford Network and

lending me equipment to get an understanding of routers. Many thanks go to them.

The team and investors at Voltage made it possible for me to complete my Ph.D.

in parallel, I am very grateful for their patience.

Last but not least my thanks to Isabelle, who supported me in good and bad

times, and was a calming influence when the Ph.D. stress was threatening to get the

upper hand.

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.1.1 Buffer Size and Router Design 2

1.1.2 Buffer Size and Latency . 4

1.2 Previous Work . 5

1.3 Organization of the Thesis . 6

2 A Single TCP Flow Through a Router 7

2.1 Router Buffers of Size 2Tp × C . 9

2.1.1 Macroscopic Behavior . 9

2.1.2 Microscopic Behavior . 11

2.2 Incorrectly Buffered Router . 14

2.2.1 Under-buffered Router . 14

2.2.2 Over-buffered Router . 14

2.3 The Rule-of-Thumb . 16

2.4 Accounting for Packets . 17

2.5 Summary . 20

3 Long Flows 21

3.1 Synchronized Long Flows . 21

vii

3.1.1 When are Flows Synchronized? 23

3.2 Desynchronized Long Flows . 25

4 Short Flow Model 31

4.1 Short Flows . 31

4.1.1 Short Flow Model . 32

4.1.2 Buffer Requirements . 34

4.2 Other Types of Flows . 37

4.2.1 Flows Constrained by Access Link and Window Size 37

4.2.2 Real-Time Protocols and Games 38

4.2.3 UDP and ICMP Flows . 38

5 Experimental Verification with ns2 39

5.1 Experimental Setup and NS2 . 39

5.2 Long Flows . 41

5.2.1 Utilization vs. Goodput . 41

5.2.2 Effect of Small Changes in Buffer Size 43

5.2.3 Small Delay Bandwidth Products 45

5.3 Short Flows . 45

5.3.1 Effect of Bottleneck Link Bandwidth on Queue Length 45

5.3.2 Effect of Access Link Bandwidth on Queue Length 47

5.3.3 Effect of Picking Buffers that are too Small 48

5.4 Mixes of Flows . 50

5.4.1 Buffer Requirements for Mixes of Flows 50

5.4.2 Flow Completion Times for Short Flows 51

5.4.3 Effect of Changes in Long/Short Ratio 53

5.5 Continuous Flow Length Distributions 54

5.6 Summary of the ns2 Simulation Results 59

6 Experimental Results on Physical Routers 60

6.1 Laboratory Experiment on a CISCO GSR 61

6.1.1 Introduction and Setup . 61

viii

6.1.2 The Cisco Catalyst 12000 Router 63

6.1.3 Results and Discussion . 64

6.2 Stanford Network Experiment . 68

6.2.1 Introduction and Setup . 69

6.2.2 The Cisco 7200 VXR . 70

6.2.3 Experiment and Results . 79

7 Conclusion 84

A 86

A.1 Summary of TCP Behavior . 86

A.2 Behavior of a Single Long TCP Flow 87

A.3 Queue Distribution using

Effective Bandwidth . 89

A.4 Configuration of ns2 . 92

A.5 Cisco IOS Configuration Snippets for the VXR 94

Bibliography 96

ix

List of Figures

2.1 Topology for a Single TCP Flow . 8

2.2 A single TCP flow through a single router with buffers equal to the

delay-bandwidth product (142 packets). 10

2.3 Microscopic behavior of a TCP flow at multiplicative decrease. 12

2.4 A TCP flow through an under-buffered router (100 packets). 13

2.5 A TCP flow through an over-buffered router (180 packets). 15

2.6 Comparison of the sum of window sizes
∑

W i(t) and 2Tp × C + Q(t) 19

3.1 Time Evolution of two TCP flows sharing a Bottleneck Link in ns2 . 22

3.2 Probability Distribution of the Sum of the Congestion Windows for

Desynchronized Flows sharing a Bottleneck Link from an ns2 simulation 26

3.3 Plot of
∑

Wi(t) of all TCP flows, and of the queue Q offset by 10500

packets. 27

3.4 Buffer Requirements vs. number of Flows 30

4.1 A Single Short-Lived TCP Flow . 32

4.2 The average queue length as a function of the flow length for ρ = 0.8. 34

4.3 Queue length distribution for load 0.85 and flows of length 2 and 62 . 35

5.1 Utilization (top) and Goodput (bottom) vs. Number of Flows for dif-

ferent buffer sizes . 42

5.2 Amount of Buffering Required for different Levels of Utilization (Top)

and Example of the 2Tp×C√
n

rule for a low bandwidth link (Bottom). . . 44

5.3 Average Queue Length for Short Flows at three Different Bandwidths 46

x

5.4 Effect of the Access Link Bandwidth on the Queue Length 47

5.5 Average Flow Completion Time for short flows as a function of the

Load of the Bottleneck Link and the amount of Buffering. 49

5.6 Minimum Required Buffer for a Mix of 20% Short Flows and 80% Long

Flows. 50

5.7 Average Flow Completion Time for Large (2Tp×C) and Small (2Tp×C√
n

)

Buffers. 52

5.8 Utilization (top) and Average Flow Completion Times (bottom) for

different Ratios of Long and Short Flows 55

5.9 Number of Flows (Top), Utilization, Queue Length and Drops (Bot-

tom) for Pareto Distributed Flow lengths with large Buffers of 2Tp × C 56

5.10 Number of Flows (Top), Utilization, Queue Length and Drops (Bot-

tom) for Pareto Distributed Flow lengths with small Buffers of 2Tp×C√
n

58

6.1 Comparison of our model, ns2 simulation and experimental results for

buffer requirements of a Cisco GSR 12410 OC3 line card. 65

6.2 Short Flow Queue Distribution of 62 packet flows measured on a Cisco

GSR compared to model prediction 66

6.3 Short Flow Queue Distribution of 30 packet flows measured on a Cisco

GSR compared to model prediction 67

6.4 Short Flow Queue Distribution of 14 packet flows measured on a Cisco

GSR compared to model prediction 68

6.5 “average” sending rate of a router as measured by IOS. Actual sending

pattern was an on/off source. The reported byte based rate and the

packet based rate differ substantially. 77

6.6 CDF of the class-based-shaping queue length reported by IOS on a

VXR router. The maximum queue length was configured to be 40

packets, however the router reports queue lengths above this value. . 78

6.7 Packet length statistics for the router in the experiment. Packet lengths

are in bytes. 79

6.8 Long term netflow statistics for the router used in the experiment . . 80

xi

6.9 Utilization data from the router measured during the experiment. The

buffer includes an extra 45 packets due to the minimum size of the

toekn buffer that in this configuration acts like an additional buffer. . 83

xii

Chapter 1

Introduction

1.1 Motivation

Internet routers are packet switches and employ buffers to hold packets during times of

congestion. Arguably, router buffers are the single biggest contributor to uncertainty

in the Internet. Buffers cause queueing delay and delay-variance. When they overflow,

they cause packet loss, and when they underflow, they can degrade throughput. Given

the significance of their role, we might reasonably expect the dynamics and sizing of

router buffers to be well understood, based on a well-grounded theory, and supported

by extensive simulation and experimentation. This is not so.

Router buffers are sized today based on a rule-of-thumb commonly attributed to a

1994 paper by Villamizar and Song [43].1 Using experimental measurements of up to

eight TCP flows on a 40 Mb/s link, they concluded that a router needs an amount of

buffering equal to the round-trip time of a typical flow that passes through the router,

multiplied by the capacity of the router’s network interfaces. This is the well-known

B = RTT × C rule. We will show later that for a small number of long-lived TCP

flows, the rule-of-thumb makes sense.

Network operators follow the rule-of-thumb and require router manufacturers to

provide 250ms (or more) of buffering [38]. The rule is also found in architectural

guidelines [9]. Requiring such large buffers complicates router design and is a big

1While attributed to this paper, it was already known to the inventors of TCP [25]

1

CHAPTER 1. INTRODUCTION 2

impediment to building routers with larger capacity. For example, a 10Gb/s router

line card needs approximately 250ms×10Gb/s = 2.5Gbits of buffers; and the amount

of buffering grows linearly with the line-rate.

Given the effect of buffer size on network performance and router design, it is

worth asking if the rule-of-thumb still holds. Today, backbone links commonly op-

erate at 2.5Gb/s or 10Gb/s and carry well over 10,000 flows [18]. Quantitatively,

current backbone links are very different from 1994 and we might expect them to

be qualitatively different too. It seems fair to say that it is currently not well un-

derstood how much buffering is actually needed or how buffer size affects network

performance [15].

It is worth asking why we care to size router buffers accurately. With declining

memory prices, why not just over-buffer routers and not run the risk of losing link

utilization? We believe over-buffering is a bad idea for two reasons. First, it has

architectural implications on high-speed routers, leading to designs that are more

complicated, consume more power, and occupy more board space. Second, over-

buffering increases end-to-end delay in the presence of congestion. This is especially

the case with TCP, as a single TCP flow in the absence of other constraints will

completely fill the buffer of a bottleneck link. In such a case, large buffers conflict with

the low-latency needs of real time applications (e.g. video games, and device control).

In some cases, large delays can make congestion control algorithms unstable [28] and

applications unusable.

1.1.1 Buffer Size and Router Design

At the time of writing, a state of the art router line card runs at an aggregate rate of

40Gb/s (with one or more physical interfaces), has about 250ms of buffering, and so

has 10Gbits (1.25Gbytes) of buffer memory.

Buffers in backbone routers are built from commercial memory devices such as

dynamic RAM (DRAM) or static RAM (SRAM).2 The largest commercial SRAM

chip today is 32Mbits and consumes about 250mW/Mbit, which means a 40Gb/s line

2DRAM includes devices with specialized I/O, such as DDR-SDRAM, RDRAM, RLDRAM and
FCRAM.

CHAPTER 1. INTRODUCTION 3

card would require more than 300 chips and consume 2.5kW, making the board too

large, too expensive and too hot. If instead we try to build the line card using DRAM,

we would need ten devices consuming only 40W. This is because DRAM devices are

available up to 1Gbit and consume only 4mW/Mbit. However, DRAM has a random

access time of about 50ns, which is hard to use when a minimum length (40byte)

packet can arrive and depart every 8ns. Worse still, DRAM access times fall by only

7% per year [21]; thus, the problem is going to get worse as line-rates increase in the

future.

In practice, router line cards use multiple DRAM chips in parallel to obtain the

aggregate data-rate (or memory-bandwidth) they need. Packets either are scattered

across memories in an ad-hoc statistical manner, or use an SRAM cache with a refresh

algorithm [24]. Either way, a large packet buffer has a number of disadvantages: it

uses a very wide DRAM bus (hundreds or thousands of signals) with a large number of

fast data pins (network processors and packet processor ASICs frequently have more

than 2,000 pins making the chips large and expensive). Such wide buses consume

large amounts of board space and the fast data pins on modern DRAMs consume too

much power.

In summary, it is extremely difficult to build packet buffers at 40Gb/s and beyond.

Given how slowly memory speeds improve, this problem is going to get worse over

time.

Substantial benefits could be gained from using significantly smaller router buffers,

particularly if it was possible to use SRAM. For example, it would be feasible to build

a packet buffer using about 512Mbits of off-chip SRAM (16 devices). If buffers of 5%

of the delay-bandwidth product were sufficient, we could use SRAM to build buffers

for a 40 Gb/s line card.

The real opportunity, however, lies in placing the memory directly on the chip

that processes the packets (a network processor or an ASIC). In this case, very wide

and fast access to a single memory is possible. Commercial packet processor ASICs

have been built with 256Mbits of “embedded” DRAM. If memories of 2% the delay-

bandwidth product were acceptable, then a single-chip packet processor would need

no external memories. We will present evidence later that buffers this small would

CHAPTER 1. INTRODUCTION 4

make little or no difference to the utilization of backbone links today.

1.1.2 Buffer Size and Latency

There is a second key argument for smaller buffers: buffers add queueing delay and

thus increase latency of the Internet. Additional latency is undesirable for short

flows and interactive applications. Excessive over-buffering can make some of these

applications unusable in the case of congestion.

If a router’s link is congested, the router’s buffer will be filled most of the time.

This introduces additional queueing delay in the order of TQ = B
C

. If the router buffer

is sized using the rule-of-thumb, this additional queueing delay is

TQ =
RTT × C

C
= RTT .

An additional queueing delay of one RTT means that in the case of congestion, a

router that is sized using the rule-of-thumb will double the latency of any flow going

through it. If there are several points of congestion on a flow’s path, each congested

router will incur an additional RTT worth of queueing delay.

Additional latency affects real-time applications such as online gaming, IP tele-

phony, video conferencing, remote desktop or terminal based applications. IP tele-

phony typically requires a round-trip latency of less than 400ms. For competitive

online gaming, latency differences of 50ms can be decisive. This means that a con-

gested router that is buffered using the rule-of-thumb will be unusable for these appli-

cations. This is the case even if the loss rate of the router is still very small. A single,

congestion-aware TCP flow that attempts to “just fill” the pipe will be sufficient to

make online gaming or IP telephony on the router impossible.

ISP’s routers are typically substantially over-buffered. For example, we measured

up to five seconds of queueing delay at one router, making web surfing extremely

cumbersome and any interactive applications all but impossible. The packet loss

rate, however, was still well below 1%. With smaller buffers, this router could have

remained usable in this case of congestion. An ISP using such an overbuffered router,

has no choice but to overprovision its network, as congestion would immediately lead

CHAPTER 1. INTRODUCTION 5

to customer complaints. Thus overbuffering indirectly is a key contributing factor to

the low utilization of the internet today.

To summarize, over-buffering is harmful and can make routers unusable for inter-

active applications, even with minimal congestion. By reducing buffers substantially,

we could almost halve the latency and latency jitter of a congested link.

1.2 Previous Work

There is surprisingly little previous work on sizing router buffers. Villamizar and Song

report the RTT ×BW rule in [43], in which the authors measure link utilization of a

40 Mb/s network with 1, 4 and 8 long-lived TCP flows for different buffer sizes. They

find that for a drop-tail queue and very large maximum advertised TCP congestion

windows, it is necessary to have buffers of RTT ×C to guarantee full link utilization.

We reproduced their results using ns2 [1] and can confirm them for the same setup.

With such a small number of flows and large congestion windows, the flows are almost

fully synchronized and have the same buffer requirement as a single flow.

Morris [30] investigates buffer requirements for up to 1500 long-lived flows over

a link of 10 Mb/s with 25ms latency. He concludes that the minimum amount of

buffering needed is a small multiple of the number of flows, and points out that for a

bandwidth-delay product of 217 packets, each flow has only a fraction of a packet in

transit at any time. Many flows are in timeout, which adversely effects utilization and

fairness. We repeated the experiment in ns2 and obtained similar results. However,

for a typical router used by a carrier or ISP, this result has limited implications.

Users with fast access links will need several packets outstanding to achieve adequate

performance. Users with slow access links (e.g. 32kb/s modem users or 9.6kb/s GSM

mobile access) have a small bandwidth delay product and need additional buffers in

the network to avoid excessive timeouts. These buffers should be at each end of the

access link, e.g. the modem bank at the local ISP or GSM gateway of a cellular

carrier, to buffer packets waiting to corss the slow link. We believe that placing these

extra buffers in the core would be the wrong approach, as over-buffering increases

latency for everyone — with fast and slow access links alike. It is also harder and

CHAPTER 1. INTRODUCTION 6

more expensive to buffer at high line-rates. Instead, the access devices that serve

slow, last-mile access links of less than 1Mb/s should continue to include about 7

packets per flow worth of buffering for each link. With line speeds increasing and the

MTU size staying constant, we would also assume this issue to become less relevant

in the future.

Avrachenkov et al [6] present a fixed-point model for utilization (for long flows) and

flow completion times (for short flows). They model short flows using an M/M/1/K

model that accounts for flows but not for bursts. In their long flow model, they use

an analytical model of TCP that is affected by the buffer through the RTT. As the

model requires fixed-point iteration to calculate values for specific settings and only

one simulation result is given, we cannot compare their results directly with ours.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we will analyze

a single flow through a router to understand the basics of TCP buffer interaction.

It will show that the rule-of-thumb comes from the dynamics of TCP’s congestion

control algorithm. The buffer size is determined by the multiplicative decrease be-

havior of TCP. In Chapter 3, we present our model for flows in congestion avoidance

mode and find that buffer requirements in this case are much smaller than predicted

by the rule-of-thumb. Chapter 4 presents a model for short flows in slow-start mode

and also concludes that small buffers usually suffice. The model is mainly of inter-

est on uncongested routers and allows us to model TCP as well as other protocols.

Chapters 5 and 6 contain extensive experimental verification of our findings using

ns2, and experiments on physical routers, including experiments with traffic on live

operational networks. We not only confirm and test the limits of our model, but also

test the effect of a number of network parameters on buffer requirements. Chapter 7

offers our conclusion.

Chapter 2

A Single TCP Flow Through a

Router

We start by modeling how a single TCP flow interacts with a router. Doing so will

not only show where the rule-of-thumb for buffer sizing comes from, it will also give

us the necessary tools to analyze the multi-flow case in Chapter 3. In Sections 2.1

and 2.2 we examine the case of a router that has the right amount of buffering vs.

a router that has too much or too little buffering. This will confirm that the rule-

of-thumb does hold for a single flow through a router. We then formally prove the

rule-of-thumb using two different methods. In Section 2.3 we will do it based on rates

and in Section 2.4 by accounting for outstanding packets.

Consider the topology in Figure 2.1 with a single sender and one bottleneck link.

The sender is sending an unlimited amount of data using TCP. We define:

7

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 8

Figure 2.1: Topology for a Single TCP Flow

W The TCP Window Size of the sender

TP The propagation delay from sender to receiver

RTT The Round-Trip-Time as measured by the sender

C The capacity of the bottleneck link

C ′ The capacity of the access link

R The sending rate of the sender

U The link utilization measured on the link

Q The length of the buffer queue

B The buffer size, Q ≤ B

The TCP sending rate is controlled by the congestion window W (for a brief

summary of how TCP’s congestion control algorithm works see Appendix A.1).

For this experiment, we assume that there is no congestion on the reverse path

and that the capacity of the access link is higher than the capacity of the bottleneck

link C ′ > C. We also assume that the window size and the sending rate of the TCP

flow are not limited.

For simplicity, we will express data (Q, B, W) in packets and rates (U , R) in

packets per second. This is a simplification as TCP effectively counts bytes and

packets might have different lengths. Buffers of real routers may be organized as

packets or smaller units (see Section 6.2), however, in practice, a flow sending at the

maximum rate will behave close to this simplified model as it will primarily generate

packets of the MTU size.

The RTT that a flow experiences is the two-way propagation delay, plus the

queueing delay TQ from the router queue:

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 9

RTT = 2Tp + TQ = 2Tp +
Q

C
.

The sending rate of the TCP flow is well known to be the window size divided by

the round trip time [42]:

R =
W

RTT
=

W

2Tp + TQ

=
W

2Tp + Q
C

. (2.1)

2.1 Router Buffers of Size 2Tp × C

2.1.1 Macroscopic Behavior

The first question we want to answer is the origin of the rule-of-thumb. The original

paper [43] looks at how to adjust TCP and router buffers in order to get full link

utilization. It finds experimentally that you need to do one of two things, either

adjust the maximum window size Wmax or have buffers of at least 2Tp × C in the

router. Our goal is to find out why this is the case.

To gain an understanding how buffers and TCP interact, we measured the window

size W , queue length Q, RTT , rate R and utilization U of the TCP flow through a

router with buffers of 2Tp × C. The result is shown in Figure 2.2. As expected, the

window size of the TCP flow (after an initial slow-start phase) follows the familiar,

slightly rounded TCP sawtooth pattern. In A.2, we present an analytical fluid model

that provides a closed-form equation of the sawtooth, and closely matches the ns2

simulations.

The utilization is 100% (i.e. equals the link rate), which we would expect, as

we used “sufficiently large” buffers according to the rule-of-thumb. Notice that the

sending rate of the TCP sender is constant, except for a short drop every time the

window scales down. Looking at Equation 2.1, we might have expected that if the

window size fluctuates according to the sawtooth pattern, the sending rate would

fluctuate as well.

The reason is as follows. In our experiment, the bottleneck link is always fully

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 10

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 [p
kt

s]

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 [p

kt
s]

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0 10 20 30 40 50 60 70 80 90 100

R
T

T
 [m

s]

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

R
at

e
[p

kt
s/

s]

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

U
til

iz
at

in
 [p

kt
s/

s]

Figure 2.2: A single TCP flow through a single router with buffers equal to the
delay-bandwidth product (142 packets).

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 11

utilized. This means that the router is sending packets at a rate C ≈ 1000 packets

per second. These packets arrive at the receiver which in turn sends ACK packets at

the same rate of 1000 packets/s. The sender receives these ACK packets and will, for

each packet received, send out a new data packet at a rate R that is equal to C, i.e.

the sending rate is clocked by the bottleneck link. (There are two exceptions to this,

when packets are dropped and when the window size is increased. If a packet was

dropped and a sequence number is missing, the sender may not send new data. We’ll

treat this case below.) Once per RTT, the sender has received enough ACK packets

to increase its window size by one. This will cause it to send exactly one extra packet

per RTT. For this work we will treat this extra packet seperately, and not consider it

as part of the sending rate. To summarize, for a sufficiently buffered router, a TCP

sender sends (not counting the extra packet from a window increase) at a constant

rate R that is equal to C:

R = C (2.2)

That this is the case in practice can be easily confirmed by looking at Figure 2.2.

This is compatible with our with our Rate Equation 2.1. The RTT follows a sawtooth

pattern that matches that of the window size and at any given time we have

W ∼ RTT

The reason for this can be seen by looking at the queue length Q in Figure 2.2. The

router receives packets from the sender at a rate of R = C, and drains its queue at

the same rate C. If W is increase by one, this causes an extra packet to be sent that

increases Q by one. As RTT = 2Tp + TQ = 2Tp + Q

C
this the increase of W by one

will cause an increase of RTT and W
RTT

is constant.

2.1.2 Microscopic Behavior

Figure 2.3 shows what happens at a smaller time scale, specifically what happens

when the TCP flow scales back its congestion window. Around t = 35.15, the router

buffer overflows and a packet is dropped. This drop information (in the form of a

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 12

 0
 50

 100
 150
 200
 250
 300

 35.2 35.3 35.4 35.5 35.6 35.7 35.8 35.9 36

W
in

do
w

 [p
kt

s]

 0
 50

 100
 150
 200
 250
 300

 35.2 35.3 35.4 35.5 35.6 35.7 35.8 35.9 36

Q
ue

ue
 [p

kt
s]

 0
 200
 400
 600
 800

 1000

 35.2 35.3 35.4 35.5 35.6 35.7 35.8 35.9 36

R
at

e
[p

kt
s/

s]

Time [seconds]

Figure 2.3: Microscopic behavior of a TCP flow at multiplicative decrease.

missing sequence number) takes some time to travel back to the sender. For a complete

description of how TCP scales down, see [42], but the effect is that at t = 35.44, the

sender halves its window size and stops sending for exactly one RTT . During this

RTT , the bottleneck link is now serviced from packets stored in the router. For a

router with buffers of 2Tp ×C, the first new packet from the sender will arrive at the

router just as it sends the last packet from the buffer, and the link will never go idle.

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 13

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 [p
kt

s]

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 [p

kt
s]

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0 10 20 30 40 50 60 70 80 90 100

R
T

T
 [m

s]

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

R
at

e
[p

kt
s/

s]

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

U
til

iz
at

in
 [p

kt
s/

s]

Figure 2.4: A TCP flow through an under-buffered router (100 packets).

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 14

2.2 Incorrectly Buffered Router

2.2.1 Under-buffered Router

Figure 2.4 shows what happens if we pick a buffer of less than 2Tp×C. The congestion

window still follows the familiar sawtooth pattern, although with a lower maximum

and a higher frequency. However, the shape of the RTT has now changed. The reason

for this is apparent from the plot of the queue length. The queue stays empty (and

hence the bottleneck link goes idle) over prolonged periods (e.g. 36 to 40). The reason

for the queue staying empty is that the sending rate R is below the link capacity C.

If the router receives less packets than it can send, the queue has to drain or stay

empty. If R < C, the utilization will be less than 100%.

Why is the link not fully utilized? In order to achieve full utilization, we need

R ≥ C. From Equation 2.1, we can see that assuming we have an empty buffer and

TQ = 0, a minimum window size of 2Tp ×C is required. The minimum window size is

half the maximum window size. The maximum window size in turn depends on the

amount of buffering in the router. If we have more buffering, more packets can be

stored in the router buffer and it will take longer for the TCP flow to scale down.

2.2.2 Over-buffered Router

Figure 2.5 shows what happens if we put more than 2Tp ×C of buffering in a router.

The TCP window is again a sawtooth, but with a higher maximum and a lower

frequency than the 2Tp ×C case. The RTT follows an identical sawtooth pattern and

we have a constant sending rate of R ≈ C and maximum utilization U = C. The

main difference is that after a window decrease, the buffer never runs empty. There

are two important insights from this.

First, a buffer never running empty is not a good indicator of how much buffering

is needed. A single TCP flow that is not constrained by window size will fill any

buffer, no matter how high.

Second, over-buffering a congested router increases queueing delay (the buffer

never empties) and increases the RTT . In the example in Figure 2.5, the added

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 15

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 [p
kt

s]

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 [p

kt
s]

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90 100

R
T

T
 [m

s]

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

R
at

e
[p

kt
s/

s]

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

U
til

iz
at

in
 [p

kt
s/

s]

Figure 2.5: A TCP flow through an over-buffered router (180 packets).

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 16

queueing delay is about 10-15 ms.

2.3 The Rule-of-Thumb

In this and the next Section we will now derive the rule-of-thumb. We have seen that

for a correctly buffered router, R is constant and equal to C directly before and after

the window size is reduced. Using these results, we will now derive the rule-of-thumb

in two different ways. As TCP behavior is most commonly described using rates, we

will first use them to derive the rule. In Section 2.4 we derive the rule-of-thumb a

second time by accounting for packets. The latter is the preferred method for the rest

of this work.

To achieve full utilization, the sending rate before and after the window size is

reduced from Wmax to Wmin, must be equal to the bottleneck link rate. From Equa-

tion 2.1, we obtain
Wmax

RTTmax

=
Wmin

RTTmin

(2.3)

With the minimum amount of buffering, we want the queue to be full (i.e. Q = B)

before and empty (i.e. Q = 0) after the window has been halved. We also know that

the minimum window size is half the maximum window size. Inserting into Equation

2.3

Wmax

2Tp × C + B
=

1
2
Wmax

2Tp × C

4Tp × C = 2Tp × C + B

B = 2Tp × C.

This is the familiar rule-of-thumb. While not widely known, similar arguments

were made elsewhere [12, 35], and our result can be easily verified using ns2 [1]

simulation and a closed-form analytical model [5].

The rule-of-thumb essentially states that we need enough buffers to absorb the

fluctuation in TCP’s window size.

One interesting observation is that the amount of buffering directly depends on

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 17

the factor TCP uses for multiplicative decrease. For TCP Reno, this is 1
2
. Generally,

if TCP scales down its window as W → W (1 − 1
n
), the amount of buffering that is

required is

B =
(

1

n − 1

)

2Tp × C.

Other types of TCP use smaller factors and require smaller buffers. For example

High-Speed TCP [16] uses an adaptive mechanism that will require much smaller

buffers for large window sizes.

TCP flavors that use latency (and not drops) to detect congestion [8, 26] have very

different buffer requirements and are based on a fixed amount of buffering needed per

flow, independent of the delay-bandwidth-product.

2.4 Accounting for Packets

We will now show how to derive the rule-of-thumb by accounting for individual pack-

ets. This different methodology will prove usful later.

Any packet that is outstanding from the sender’s point of view can only be in one

of three places:

• In Transit on one of the network links, either as a packet or as an ACK on its

way back.

• Queued in in the router buffer.

• Dropped somewhere in the network.

A packet that is dropped will only be counted as dropped as long as the sender hasn’t

detected the drop yet. Once detected, the dropped packet is no longer counted as

outstanding.

Assuming we have full utilization of the bottleneck link, we know that packets

leave the sender as well as the router at a constant rate of C. The number of packets

in transit with an empty buffer is 2Tp × C. The number of packets in the buffer is

the length of the queue Q(t).

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 18

The number of outstanding packets is commonly equated with the window size.

This is not entirely correct as when the window-size is halved, the window size differs

substantially from the actual number of outstanding packets [42]. However, both W

and the number of outstanding packets share the increase and multiplicative decrease

behavior. As the common intuition on W captures all of the essential aspects of the

number of outstanding packets, we will use W for the number of outstanding packets

for the remainder of this work. 1

In summary, we can write the equation of outstanding packets

W (t) = 2Tp × C + Q(t) + ∆drop(t) (2.4)

This equation without losses holds well in practice over a wide range of TCP

settings, for multiple flows (in this case we substitute W (t) by the sum of the windows

of all flows
∑

W i(t)), mixes of long and short flows and other network topologies.

Figure 2.6 shows a link that receives bursty TCP traffic from many flows and is

congested over short periods of time. For this graph, we plot utilization multiplied by

the two-way propagation delay 2Tp ×U to allow a uniform scale on the y axis. When

t < 0.4 utilization is below 100% and 2Tp × U ≈ ∑

W i(t). This makes sense as we

have one RTT (with empty buffers is RTT = 2Tp) worth of traffic at rate U in transit

at any given time and the buffer is still empty. For periods of full link utilization (e.g.

from 3 to 4 seconds), we have
∑

W i(t) = 2Tp×C +Q. The second observation is that
∑

W i(t) < 2Tp ×C is a necessary and sufficient condition for the utilization dropping

below 100%.

Using Equation 2.4, we can now also easily derive the rule-of-thumb. At the time

before and after the window size is reduced, no packets are dropped and the network

is “filled” with packets (i.e. no link is idle). The capacity of the network is 2Tp × C

packets. We therefore need a minimum window size (after decrease) of

Wmin = 2Tp × C

1For ns2 simulations we measured the actual number of outstanding packets as the difference
between highest sequence number sent and highest sequence number acknowledged. This again will
be referred to as W .

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 19

 400

 500

 600

 700

 800

 900

 1000

 0 1 2 3 4 5 6

P
ac

ke
ts

time [seconds]

Aggregate Window W
Q + 2T*C

Link Utilization
100% Utilization

Figure 2.6: Comparison of the sum of window sizes
∑

W i(t) and 2Tp × C + Q(t)

and for the maximum window size, the extra packets have to be in the router buffer

Wmax = 2Tp × C + B.

.

We know the maximum window size is half the minimum window size Wmax =

2Wmin. We substitute and find again the rule-of-thumb:

B = Wmax − 2Tp × C = 2Wmin − 2Tp × C = 2 × 2Tp × C − 2Tp × C = 2Tp × C

CHAPTER 2. A SINGLE TCP FLOW THROUGH A ROUTER 20

2.5 Summary

To summarize this Chapter, the role of a router buffer is to absorb the fluctuation

in TCP window size and the fluctuation in the number of packets on the network.

Because TCP in congestion avoidance mode varies its window size between Wmax and
1
2
Wmax, the number of packets on the network varies by a factor of two, and conse-

quently, the buffer needs to hold an amount of packets that’s equal to the capacity of

the network. For one or a small number of flows, this capacity is one delay bandwidth

product as correctly observed by Villamizar and Song [43].

Chapter 3

Long Flows

In a backbone router, many flows share the bottleneck link simultaneously. For ex-

ample, a 2.5Gb/s (OC48c) link typically carries more than 10,000 flows at a time [18].

This should not be surprising: A typical user today is connected via a 56kb/s modem,

and a fully utilized 2.5Gb/s can simultaneously carry more than 40,000 such flows.

When it’s not fully utilized, the buffers are barely used, and the link isn’t a bottle-

neck. Therefore, we should size the buffers to accommodate a large number of flows.

So, how should we change our model to reflect the buffers required for a bottleneck

link with many flows? We will consider two situations. First, we will consider the

case when all the flows are synchronized with each other, and their sawtooths march

in lockstep perfectly in-phase. Then, we will consider flows that are not synchronized

with each other, or are at least, not so synchronized as to be marching in lockstep.

When they are sufficiently desynchronized — and we will argue that this is the case

in practice — the amount of buffering drops sharply.

3.1 Synchronized Long Flows

Consider the evolution of two TCP Reno flows through a bottleneck router. The

evolution of the window sizes, sending rates and queue length is shown in Figure 3.1.

Although the two flows start at different times (time 0 and 10 seconds respectively),

they synchronize quickly to be perfectly in phase. This is a well-documented and

21

CHAPTER 3. LONG FLOWS 22

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 [p
kt

s] Flow 1
Flow 2

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 [p

kt
s]

 0
 200
 400
 600
 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

R
at

e
[p

kt
s/

s]

time [seconds]

Flow 1
Flow 2

Figure 3.1: Time Evolution of two TCP flows sharing a Bottleneck Link in ns2

studied tendency of flows sharing a bottleneck to become synchronized over time [35,

4].

A set of precisely synchronized flows has the same buffer requirements as a single

flow. Their aggregate behavior is still a sawtooth; as before, the height of the sawtooth

is dictated by the maximum window size needed to fill the round-trip path, which

is independent of the number of flows. Specifically, assume that there are n flows,

each with a congestion window W i(t) at time t, and end-to-end propagation delay T i
p,

where i = [1, ..., n]. The window size is the maximum allowable number of outstanding

packets, so from Equation 2.4, we have

n
∑

i=1

W i(t) = 2T p × C + Q(t) (3.1)

CHAPTER 3. LONG FLOWS 23

where Q(t) is the buffer occupancy at time t, and T p is the average1 propagation

delay. As before, we can solve for the buffer size by considering two cases: just before

and just after packets are dropped. First, because they move in lock-step, the flows

all have their largest window size, Wmax at the same time; this is when the buffer is

full, so

n
∑

i=1

W i
max = Wmax = 2T p × C + B. (3.2)

Similarly, their window size is smallest just after they all drop simultaneously [35].

If the buffer is sized so that it just goes empty as the senders start transmitting after

the pause, then

n
∑

i=1

W i
min =

Wmax

2
= 2T p × C. (3.3)

Solving for B, we find once again that B = 2T p × C = RTT × C. Clearly, this

result holds for any number of synchronized in-phase flows.

3.1.1 When are Flows Synchronized?

The basic mechanism for flow synchronization was first described in [35]. When a

single flow without any sources of randomness passes through a router, it fills the

router buffer packet by packet with the “extra” packets sent when it increases its

window size. The packet that is eventually dropped is the first “extra” packet sent

when the buffer is already full. It then takes the flow one RTT before this information

travels back to the source and it can scale down and reduce its sending rate. If two

flows share a router, during this RTT , the second flow will also increase its window

size and send one “extra” packet. This packet will also be dropped and both flows

scale down in the same RTT .

Such synchronization behavior has been widely observed in ns2 simulation (e.g.

[4],[45]) and methods to reduce synchronization have been proposed [17]. In [33], the

1
T p is actually a weighted average that is skewed towards lower values of Tp. Flows with shorter

Tp have a shorter RTT , therefore scale up more quickly and receive a larger share of the bandwidth,
which means they have a larger share of the packets in transit.

CHAPTER 3. LONG FLOWS 24

authors find synchronization in ns2 for up to 1000 flows as long as the RTT variation

is below 10%. Likewise, we found in our simulations and experiments that while in-

phase synchronization is common for less than 100 concurrent flows, it is very rare

above 500 concurrent flows.2

On real networks, synchronization is much less frequent. Anecdotal evidence of

synchronization [3] is largely limited to a small number of very heavy flows. In

a laboratory experiment on a throttled shared memory router, we found that two

typical TCP flows were not synchronized, while an identical ns2 setup showed perfect

synchronization. On large routers in the core of the network, there is no evidence

of synchronization at all [18, 23]. Most analytical models of TCP traffic operate at

a flow level and do not capture packet-level effects. They are therefore, no help in

predicting the conditions under which synchronization occurs. The only model we

know of [13] that predicts synchronization does not give clear bounds that we could

use to guess when it occurs.

Today, we don’t understand fully what causes flows to synchronize and to what

extent synchronization exists in real networks. It seems clear that the ns2 simulator

with long-lived flows does not correctly predict synchronization on real networks. This

is not surprising as ns2 in itself introduces no randomness into the traffic, while real

networks have a number of such sources (e.g. shared memory routers, shared medium

collisions, link-level errors, end host service times, etc.).

It is safe to say though, that flows are not synchronized in a backbone router car-

rying thousands of flows with varying RTTs. Small variations in RTT or processing

time are sufficient to prevent synchronization [33]; and the absence of synchronization

has been demonstrated in real networks [18, 23]. Although we don’t precisely under-

stand when and why synchronization of TCP flows takes place, we observed that

for aggregates of more than 500 flows with varying RTTs, the amount of in-phase

synchronization decreases even in ns2. Under such circumstances, we can treat flows

as being not synchronized at all.

2Some out-of-phase synchronization (where flows are synchronized but scale down their window
at different times during a cycle) was visible in some ns2 simulations with up to 1000 flows. How-
ever, the buffer requirements are very similar for out-of-phase synchronization as they are for no
synchronization at all.

CHAPTER 3. LONG FLOWS 25

3.2 Desynchronized Long Flows

To understand the difference between adding synchronized and desynchronized win-

dow size processes, recall that if we add together many synchronized sawtooths, we

get a single large sawtooth, and the buffer size requirement doesn’t change. If on the

other hand, the sawtooths are not synchronized, the more flows we add, the less their

sum will look like a sawtooth. They will smooth each other out, and the distance

from the peak to the trough of the aggregate window size will get smaller. Hence,

given that we need as much buffer as the distance from the peak to the trough of the

aggregate window size, we can expect the buffer size requirements to get smaller as

we increase the number of flows. This is indeed the case, and we will explain why

and then demonstrate via simulation.

Consider a set of TCP flows with random (and independent) start times and

propagation delays. We’ll assume that they are desynchronized enough that the

window size processes are independent of each other. We can model the total window

size as a bounded random process made up of the sum of these independent sawtooths.

We know from the central limit theorem that the aggregate window size process will

converge to a Gaussian process.

More formally, we model the congestion windows Wi(t) as independent random

variables

E[Wi] = µW var[Wi] = σ2
W .

Now, the central limit theorem gives us the distribution of the sum of the window

sizes as

∑

Wi(t) → nµW +
√

nσW N(0, 1).

Figure 3.2 shows that indeed, the aggregate window size does converge to a Gaus-

sian process. The graph shows the probability distribution of the sum of the conges-

tion windows of all flows W =
∑

Wi, with different propagation times and start times

as explained in Chapter 5.

CHAPTER 3. LONG FLOWS 26

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 9500 10000 10500 11000 11500 12000 12500

P
ro

ba
bi

lit
y

Packets

Buffer = 1000 pkts

Q = 0
link underutilized

Q > B
packets dropped

PDF of Aggregate Window
Normal Distribution N(11000,400)

Figure 3.2: Probability Distribution of the Sum of the Congestion Windows for Desyn-
chronized Flows sharing a Bottleneck Link from an ns2 simulation

With this model of the distribution of W , we can now find the necessary amount

of buffering. From the window size process, we know from Equation 2.4 that the

queue occupancy at time t is

Q(t) =
n
∑

i=1

Wi(t) − (2Tp × C) − ∆drop (3.4)

This equation assumes full utilization and an unlimited buffer. What happens

with a limited buffer can be seen in Figure 3.3. In the graph, we plotted the queue

length against the right side of Equation 3.4. As we have many desynchronized flows,

the sum of the TCP windows fluctuates rapidly at time scales below or around one

RTT . The two dotted lines are for Q = 0 and Q = B, respectively. We can see that

CHAPTER 3. LONG FLOWS 27

 12000

 11500

 10500

 10000

 50 52 54 56 58 60 62 64

time [seconds]

B
uf

fe
r

B
Sum of TCP Windows [pkts]
Router Queue [pkts]

Figure 3.3: Plot of
∑

Wi(t) of all TCP flows, and of the queue Q offset by 10500
packets.

the above equation holds very well as long as the number of outstanding packets plus

2Tp×C is within the buffer. If the queue drops below the lower line, our utilization is

below 100%. If we are above the upper line, the buffer overflows and we drop packets.

The goal of picking the buffer is to make sure both of these events are rare and most

of the time 0 < Q < B.

Equation 3.6 tells us that if W has a Gaussian distribution, Q has a Guassian

distribution shifted by a constant (of course, the Guassian Distribution is restricted

to the allowable range of Q). This is very useful because we can now pick a buffer

size and know immediately the probability that the buffer will underflow and lose

throughput.

Because it is Gaussian, we can determine the queue occupancy process if we know

CHAPTER 3. LONG FLOWS 28

its mean and variance. The mean is simply the sum of the mean of its constituents.

To find the variance, we’ll assume for convenience that all sawtooths have the same

average value (assuming different values would not fundamentally change the result).

For a given network link, the overall bandwidth, and thus the sum of the congestion

windows
∑

W , will be the same for any number of flows n. If we denote the average

and variance for a single flow as

E[W] = µn=1 var[W] = σ2
n=1,

then if n flows share this link, the mean and variance become

E[W] =
µn=1

n
var[W] =

(

σn=1

n

)2

and the sum of the windows decreases to

∑

Wi(t) → n
µW

n
+
√

n
σW N(0, 1)

n
(3.5)

= µn=1 +
1√
n

σn=1N(0, 1). (3.6)

We can model each window as a sawtooth oscillating between minimum 2
3
µW and

maximum 4
3
µW . Since the standard deviation of the uniform distribution is 1√

12
-th of

its length, the standard deviation of a single window size σWi
is thus

σWi
=

1√
12

(

4

3
W i −

2

3
W i

)

=
1

3
√

3
W i

From Equation (3.4),

W i =
W

n
=

2T p × C + Q

n
≤ 2T p × C + B

n
.

For a large number of flows, the standard deviation of the sum of the windows, W , is

given by

σW ≤
√

nσWi
,

CHAPTER 3. LONG FLOWS 29

and so by Equation (3.4) the standard deviation of Q(t) is

σQ = σW ≤
(

1

3
√

3

)

2T p × C + B√
n

.

Now that we know the distribution of the queue occupancy, we can approximate

the link utilization for a given buffer size. Whenever the queue size is below a thresh-

old, b, there is a risk (but not guaranteed) that the queue will go empty, and we

will lose link utilization. If we know the probability that Q < b, then we have an

upper bound on the lost utilization. Because Q has a normal distribution, we can use

the error-function3 to evaluate this probability. Therefore, we get the following lower

bound for the utilization

Util ≥ erf







3
√

3

2
√

2

B
2T p×C+B√

n





 . (3.7)

Here are some numerical examples of utilization, using n = 10000.

Router Buffer Size Utilization

B = 1 · 2T p×C√
n

Util ≥ 98.99 %

B = 1.5 · 2T p×C√
n

Util ≥ 99.99988 %

B = 2 · 2T p×C√
n

Util ≥ 99.99997 %

This means that we can achieve full utilization with buffers that are the delay-

bandwidth product divided by the square-root of the number of flows, or a small

multiple thereof. As the number of flows through a router increases, the amount of

required buffer decreases.

Whether this model holds can be easily verified using ns2 and the result is shown

in Figure 3.4. Between one and 300 flows share a bottleneck link, and we iteratively

found the minimum amount of buffering that allows us to achieve at least 95% link

utilization. For fewer than 50 flows, our model clearly does not hold, we still have

synchronization effects. However, as we reach 50 flows, the flows desynchronize and

3A more precise result could be obtained by using Chernoff Bounds instead. However to achieve
our goal of determining a buffer size that gives us low packet loss and underutilization, this simple
method is sufficient.

CHAPTER 3. LONG FLOWS 30

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

M
in

im
um

 B
uf

fe
r

[P
kt

s]

Number of TCP flows

ns2 Simulation
2T*C/sqrt(n)

Figure 3.4: Buffer Requirements vs. number of Flows

we can see that our model predicts the actual required minimum buffer very well.

We will verify our model more extensively with simulations in Chapter 5 and with

experiments on real networks in Chapter 6.

This result has practical implications for building routers. A typical congested

core router currently has 10,000 to 100,000 flows passing through it at any given

time. While the vast majority of flows are short (e.g. flows with fewer than 100

packets), the flow length distribution is heavy-tailed and the majority of packets at

any given time belong to long flows4. As a result, such a router would achieve close

to full utilization with buffer sizes that are only 1√
10000

= 1% of the delay-bandwidth

product.

4Live production networks have mixes of short flows and long flows. We will show that this model
also holds for mixes of flows in Chapter 5 and present results on estimating n from live traffic in
Chapter 6.

Chapter 4

Short Flow Model

4.1 Short Flows

Not all TCP flows are long-lived; in fact, many flows last only a few packets, never

leave slow-start, and never reach their equilibrium sending rate [18]. Up until now,

we’ve only considered long-lived TCP flows, so now, we’ll consider how short TCP

flows affect the size of the router buffer. We’re going to find that short flows (TCP

and non-TCP) have a much smaller effect than long-lived TCP flows, particularly in

a backbone router with a large number of flows.

We will define a short-lived flow to be a TCP flow that never leaves slow-start

(e.g. any flow with fewer than 90 packets, assuming a typical maximum window size

of 65kB). In Section 4.2, we will see that our results hold for types of TCP flows and

some non-TCP flows too (e.g. DNS queries, ICMP, etc.).

Consider again, the topology in Figure 2.1, with multiple senders on separate ac-

cess links. As has been widely reported from measurement, we assume that new short

flows arrive according to a Poisson process [32, 14]. In slow-start, TCP increases its

congestion window by one for each successfully transmitted packet. This effectively

doubles the congestion window for each full window worth of packets that is trans-

mitted. Figure 4.1 shows an example of this behavior. After establishing the TCP

session with the exchange of SYN packets, the flow sends out a first burst of two

packets. Each subsequent burst has twice the length of the previous one (i.e. four,

31

CHAPTER 4. SHORT FLOW MODEL 32

 0

 10

 20

 30

 5.8 6 6.2 6.4 6.6 6.8

P
ac

ke
ts

 p
er

 1
0m

s
in

te
rv

al

time [seconds]

Packets sent by TCP Server

Figure 4.1: A Single Short-Lived TCP Flow

eight, sixteen, etc.). If the access links have lower bandwidth than the bottleneck

link, the bursts are spread out and a single burst causes no queueing. We assume the

worst case where access links have infinite speed; bursts arrive intact at the bottleneck

router.

4.1.1 Short Flow Model

We will model bursts arriving from many different short flows at the bottleneck router.

Some flows will send a burst of two packets, while others might send a burst of four,

eight or sixteen packets and so on. There will be a distribution of burst-sizes; and if

there is a very large number of flows, we can consider each burst to be independent of

the other bursts, even of the other bursts in the same flow. In this simplified model,

the arrival process of bursts themselves (as opposed to the arrival of flows) can be

assumed to be Poisson. One might argue that the arrivals are not Poisson as a burst is

followed by another burst one RTT later. However, under a low load and with many

CHAPTER 4. SHORT FLOW MODEL 33

flows, the buffer will usually empty several times during one RTT and is effectively

“memoryless” at this time scale.

For instance, let’s assume we have arrivals of flows of a fixed length l. Because of

the doubling of the burst lengths in each iteration of slow-start, each flow will arrive

in n bursts of size

Xi = {2, 4, ...2n−1, R},

where R is the remainder, R = l mod (2n − 1). Therefore, the bursts arrive as a

Poisson process, and their lengths are i.i.d. random variables, equally distributed

among {2, 4, ...2n−1, R}.
The router buffer can now be modeled as a simple M/G/1 queue with a FIFO

service discipline. In our case, a “job” is a burst of packets, and the job size is the

number of packets in a burst. The average number of jobs in an M/G/1 queue is

known to be (e.g. [44])

E[N] =
ρ

2(1 − ρ)
E[X2].

Here, ρ is the load on the link (the ratio of the amount of incoming traffic to the

link capacity C), and E[X] and E[X2] are the first two moments of the burst size.

This model will overestimate the queue length because bursts are processed packet-

by-packet while in an M/G/1 queue, the job is only de-queued when the whole job

has been processed. If the queue is busy, it will overestimate the queue length by half

the average job size, and so,

E[Q] =
ρ

2(1 − ρ)

E[X2]

E[X]
− ρ

E[X]

2
.

It is interesting to note that the average queue length is independent of the number

of flows and the bandwidth of the link. It only depends on the load of the link and

the length of the flows.

A similar model is described in [20]. The key difference is that the authors model

bursts as batch arrivals in an M [k]/M/1 model (as opposed to our model that models

bursts by varying the job length in a M/G/1 model). It accommodates both slow-

start and congestion avoidance mode; however, it lacks a closed form solution. In the

CHAPTER 4. SHORT FLOW MODEL 34

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
E

[Q
]

Length of TCP Flow [pkts]

 40 Mbit/s link
 80 Mbit/s link
200 Mbit/s link

M/G/1 Model

Figure 4.2: The average queue length as a function of the flow length for ρ = 0.8.

end, the authors obtain queue distributions that are very similar to ours.

4.1.2 Buffer Requirements

We can validate our model by comparing it with simulations. Figure 4.2 shows a plot

of the average queue length for a fixed load and varying flow lengths, generated using

ns2. Graphs for three different bottleneck link bandwidths (40, 80 and 200 Mb/s)

are shown. The model predicts the relationship very closely. Perhaps surprisingly,

the average queue length peaks when the probability of large bursts is highest, not

necessarily when the average burst size is highest. For instance, flows of size 14

will generate a larger queue length than flows of size 16. This is because a flow of

14 packets generates bursts of Xi = {2, 4, 8} and the largest burst of size 8 has a

CHAPTER 4. SHORT FLOW MODEL 35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

P
ro

ba
bi

lit
y

of
 Q

 >
 x

Queue length [pkts]

Flow length of 2 (ns2 simulation)
Flow length of 64 (ns2 simulation)

Flow length 2 (M/G/1 Model)
Flow length 62 (M/G/1 Model)

Figure 4.3: Queue length distribution for load 0.85 and flows of length 2 and 62

probability of 1
3
. A flow of 16 packets generates bursts of sizes Xi = {2, 4, 8, 4}, where

the maximum burst length of 8 has a probability of 1
4
. As the model predicts, the

bandwidth has no effect on queue length, and the measurements for 40, 80 and 200

Mb/s are almost identical. The gap between model and simulation is because the

access links before the bottleneck link space out the packets of each burst. Slower

access links would produce an even smaller average queue length.

To determine the buffer size, we need the probability distribution of the queue

length, not just its average. This is more difficult as no closed form result exists for a

general M/G/1 queue length distribution. Instead, we approximate its tail using the

effective bandwidth model [27], which tells us that the queue length distribution is

P (Q ≥ b) = e
−b

2(1−ρ)
ρ

E[Xi]

E[X2
i
] .

This equation is derived in Appendix A.3.

CHAPTER 4. SHORT FLOW MODEL 36

Figure 4.3 shows an experimental verification of this result. For traffic of only short

flows of length two and length 62 respectively, we measured the queue occupancy using

an ns2 simulation and compared it to the model predictions. The model gives us a

good upper bound for the queue length distribution. It overestimates the queue length

as the model assumes infinitely fast access links. The access links in ns2 spread out

the packets slightly, which leads to shorter queues. The overestimation is small for

the bursts of length two, but much larger for bursts of length 62. In Chapter 5, we

will evaluate this effect in more detail.

Our goal is to drop very few packets (if a short flow drops a packet, the retrans-

mission significantly increases the flow’s duration). In other words, we want to choose

a buffer size B such that P (Q ≥ B) is small.

A key observation is that, for short flows, the size of the buffer does not depend

on the line-rate, the propagation delay of the flows, or the number of flows; it only

depends on the load of the link, and length of the flows. Therefore, a backbone router

serving highly aggregated traffic needs the same amount of buffering to absorb short-

lived flows as a router serving only a few clients. Furthermore, because our analysis

doesn’t depend on the dynamics of slow-start (only on the burst-size distribution), it

can be easily extended to short unresponsive UDP flows.

In practice, buffers can be made even smaller. For our model and simulation, we

assumed access links that are faster than the bottleneck link. There is evidence [18, 10]

that highly aggregated traffic from slow access links in some cases can lead to bursts

being smoothed out completely. In this case, individual packet arrivals are close to

Poisson, resulting in even smaller buffers. The buffer size can be easily computed

with an M/D/1 model by setting Xi = 1.

In summary, short-lived flows require only small buffers. When there is a mix of

short- and long-lived flows, we will see from simulations and experiments in Chapter 5

that the short-lived flows contribute very little to the buffering requirements, and the

buffer size will usually be determined by the number of long-lived flows.1

1For a distribution of flows, we define short flows and long flows as flows that are in slow-start
and congestion avoidance mode respectively. This means that flows may transition from short to
long during their existence.

CHAPTER 4. SHORT FLOW MODEL 37

4.2 Other Types of Flows

The model described above is not only valid for short flows, but also for any other

traffic that:

• Does not adapt its overall sending patterns to packet loss or changes in latency

(other than simple retransmitting of packets)

• Sends packets in bursts where the time between bursts is large enough that the

router buffer will usually empty at least once during this time. For a high-speed

router at moderate loads, this is always the case if the inter-burst interval is in

the order of the RTT.

If these two conditions hold, the arguments and methodology we used for short

flows will equally hold and give us a good model of the queue distribution. Below, we

discuss several examples of such flows.

4.2.1 Flows Constrained by Access Link and Window Size

Most flows from residential networks today are constrained by the access link. Internet

access from home (56kB/s to 1Mb/s) is much slower than the links of ISPs (100’s of

Mb/s) or the backbone (≥ 1 Gb/s). Links for residential access tend to have very large

buffers such that the buffer of the access link is larger than the maximum window size

of a sender Wmax < B. We know that W = 2Tp × C + Q, thus, Q = W − 2Tp × C <

W ≤ Wmax and thus, Q < B. In other words, such an over-buffered access link can

never drop a packet because the window is too small to ever fill the buffer.

The traffic of such an over-buffered access link appears to a core router as a

constant rate sender. Aggregate traffic from such sources will behave very close to a

Poisson arrival process (we believe this is the reason why Poisson arrivals at a packet

level were seen in [18]) and the buffer requirements of the router can be calculated

with the above model and a burst size of one packet. As we will see in Chapter 5

even for high loads a few ten packets are sufficient to achieve extremely low loss

probabilities.

CHAPTER 4. SHORT FLOW MODEL 38

4.2.2 Real-Time Protocols and Games

Streaming media and online computer games are typically sent at a constant rate.

However, in some encoding schemes, the rate varies slightly over small time scales.

We can model constant rate senders (e.g. the Quake Engine protocol) with the model

described in this Chapter and a burst size equal to the packet size. Varying the

encoding rate (as it is done by some media streaming protocols as well as congestion-

adaptive protocols) is more complicated and beyond the scope of this work.

4.2.3 UDP and ICMP Flows

UDP and ICMP flows with constant rate sending patterns (e.g. low-rate port scans,

ping traces, DNS lookups, UDP based online gaming protocols) can be modeled using

the short flow model described here, and should require very small buffers. Congestion

aware UDP protocols would require a separate analysis but are very rare on the

internet.

Chapter 5

Experimental Verification with ns2

This chapter is dedicated to verifying the models we built in the last two chapters

using simulation with the ns2 [1] network simulator. We also give an overview of our

experimental setup and methodology to facilitate further research in the area.

Some of the experimental scripts used for this work are available on the author’s

home page and use, modification and re-distribution for research purposes is encour-

aged.

We initially look at long flows and short flows separately. This allows us to verify

quantitatively our models and get a better understanding on where they hold. We

then combine long and short flows to see how they interact. Real traffic typically

consists of flows with a continuous and typically heavy-tailed length distribution.

We, therefore, study Pareto distributed flow lengths to see if the models we built for

the separate classes still hold for this case.

Finally, we show that our model, at least in some cases, also holds for two-way

congestion.

5.1 Experimental Setup and NS2

NS2 [1] is a freely available discrete event network simulator. It comes with basic

models for links, routers, end hosts and a large number of protocols. It is the current

39

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 40

defacto standard to analyze new protocols and models in the academic network re-

search community. It is known to give a very accurate picture of how protocols will

perform on real networks; however, it is also known to deviate in some areas, such as

predicting synchronization in the network.

For the NS2 simulations in this thesis, we, in most cases, used a standard dumbbell

topology. A number of senders send data over network links (herein referred to as

“access links”) to a router. Each sender has a separate access link with an individual

latency and bandwidth. In most experiments, bandwidths were identical, however,

the latency varies by about 20% of the total end-to-end latency unless otherwise noted.

The router is connected to a receiving host via the bottleneck link. All receivers are

on the receiving host. All links are bi-directional full-duplex links.

Focusing on this topology might seem restrictive at first. However, in practice,

the model captures most characteristics of a complex network, or can at least be used

to build a “worst case” topology that is similar to a complex topology, but will create

more burstiness.

In a complex network, we can calculate the propagation delay for any sender-

destination pair. By adjusting the variable latency of the access links, we can tune

our simplified network to the same end-to-end propagation delay. In the absence of

any (even short term) congestion, we can therefore create a simplified network that

from the sender/receiver point of view is identical to the complex network.

In practice, a complex network would encounter congestion in two places. In the

access networks leading to and from the router, and at the bottleneck link. The focus

of this entire work is to investigate buffer requirements for networks with a single

point of congestion. There still might be short-term congestion in the access network

(e.g. two packets arriving at an access router at the same time), however this will

mainly have the effect of reducing burstiness of the arriving traffic, which has little

effect on long-lived flows and reduces queue size for short lived flows. The main effect

of our simplified topology is to see an increased amount of burstiness and concurrent

packet arrivals at our bottleneck router. In other words, we simplify the network in

a way that, at least in most cases, should increase buffer requirements.

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 41

Multiple points of congestion would undoubtedly require different topologies. How-

ever, with the exception of two-way congestion, investigating this is beyond the scope

of this work.

For the experiments, we use TCP Reno, as it is close to the most common flavors

of TCP deployed in the internet today. Unless otherwise indicated, we had no limit on

the maximum window size of a flow. In the real Internet, window sizes are typically

limited to 12 packets (MS Windows Desktop OS [29]) or 43 packets (Linux, BSD,

MS Windows Server OS). Again, we do this in order to find the maximum buffer

requirements. As we will see below, fixed window sizes can considerably reduce buffer

requirements.

We used the simple TCP implementation of ns2 with TCP senders and a TCP sink,

as we did not need the additional features of the full, two-way TCP implementation.

Simple TCP accounts for all traffic as well as for the window size in packets. While

real TCP stacks use bytes, this makes little difference as long as we have flows sending

at the maximum rate.

5.2 Long Flows

In this Section, we examine the behavior of many long flows in congestion avoidance

mode that saturate a router. Flows are started at different times during an initializa-

tion phase and try to send an infinite amount of data. We then wait for the system

to stabilize - typically between 10 and 60 seconds - and then measure for another 60

to 120 seconds. The propagation delay TP of the flows was evenly distributed at an

average with a standard deviation of at least 10%.

5.2.1 Utilization vs. Goodput

The first experiment tries to illustrate the relationship between the number of flows,

the amount of buffering and the utilization or goodput. The top graph in Figure 5.1

shows the utilization vs. the number of concurrent long-lived flows passing through

a 20 Mb/s link with 130 ms latency for a buffer of 50, 100 and 500. Overall, average

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 42

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 100 200 300 400 500

ut
ili

za
tio

n

number of flows

50 packet buffer (20 ms)
100 packet buffer (40 ms)

>= 500 packet buffer (200 ms)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 50 100 150 200 250 300

go
od

pu
t

number of flows

50 packet buffer (20ms)
100 packet buffer (40ms)

500 packet buffer (200ms)

Figure 5.1: Utilization (top) and Goodput (bottom) vs. Number of Flows for different
buffer sizes

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 43

two-way propagation delay was 130ms and the buffer sizes correspond to 20ms, 40ms

and 200ms, respectively.

With buffers above 2Tp × C, we can achieve full utilization, even with a single

flow. However, if we reduce the buffers, a small number of flows is no longer able to

achieve full utilization. As we increase the number of flows, and with it the amount

of statistical multiplexing, utilization increases until it eventually reaches 100%.

The bottom graph in Figure 5.1 shows goodput achieved in the same experiment.

The results are essentially the same. With small buffers, we need a minimum number

of flows to achieve full utilization. With large buffers, even a single flow can saturate

the link. Goodput decreases as the number of flows increases and it is slightly higher

for larger buffers. This is not surprising as more flows lead to smaller TCP windows

and thus a higher drop rate [31].

5.2.2 Effect of Small Changes in Buffer Size

We know that utilization depends on buffer size and the number of flows. We have

seen in Chapter 3 that we need buffers of approximately 2Tp×C√
n

to achieve close to full

utilization. The upper graph in Figure 5.2 gives us an idea of the exact relationship

between utilization and buffer size. For a specific utilization target and a specific

number of flows, we iteratively found the minimum amount of buffering that was

needed for an OC3 line. The number of flows was varied between 50 and 500 and we

repeated the experiment for 98%, 99%, 99.5% and 99.9% utilization. For comparison,

we also plotted lines for buffers of size 2Tp×C√
n

and 2 × 2Tp×C√
n

.

The results largely confirm our intuition. In order to achieve higher Utilization,

we need larger buffers. However, for a large number of flows, the additional amount

of buffering required to increase utilization from 98% to 99.9% becomes very small.

At 400 flows, it is much less than a factor of two. This graph also tells us that for a

real router, we should probably use 2 × 2Tp×C√
n

as this will guarantee us very close to

100% utilization.

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 44

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450 500

M
in

im
um

 r
eq

ui
re

d
bu

ffe
r

[p
kt

s]

Number of long-lived flows

98.0% Utilization
99.0% Utilization
99.5% Utilization
99.9% Utilization
RTTxBW/sqrt(x)

2*RTTxBW/sqrt(x)

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300

R
eq

ui
re

d
B

uf
fe

r

Number of Flows

Minimum Buffer for 99.5% Utilization
RTT x BW/sqrt(n)

2 * RTT x BW/sqrt(n)

Figure 5.2: Amount of Buffering Required for different Levels of Utilization (Top)
and Example of the 2Tp×C√

n
rule for a low bandwidth link (Bottom).

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 45

5.2.3 Small Delay Bandwidth Products

Our rule seems to hold well above 100 Mb/s, how does it behave for small delay

bandwidth products? The lower graph in Figure 5.2 shows the minimum buffer re-

quirement for 99.9% utilization on a 20 Mb/s link. At first glance, it seems that even

at this low bandwidth, our model holds well, as long as we have at least 100 flows.

However, for this experiment, our delay-bandwidth product is only 325 packets. With

100 flows, the average window size per flow would only be 3.25 packets and we would

have frequent timeouts [31]. The insight here is that our new rule-of-thumb holds

even in environments where timeouts are frequent, even if this is not a desirable point

to operate a network.

We also ran experiments to see what happens in cases where the number of flows

n is larger than the delay-bandwidth product in packets. In such a scenario, the

average window size drops below one and a majority of flows will be in timeout at

any given time. It seems that in this case, we need buffers that are slightly larger

than 2Tp×C√
n

. We did not investigate this further as networks operating under such

extreme congestion should be very rare.

5.3 Short Flows

We have seen in Chapter 4 that buffering on uncongested routers can be modeled

using M/G/1 model. A key result was that buffering depends only on flow lengths

and load. In this Section, we want to verify these results and see how they are

influenced by other network parameters.

5.3.1 Effect of Bottleneck Link Bandwidth on Queue Length

Our short flow model predicts that buffering is independent of the line speed. Even

though our model made some simplifying assumptions, the results holds extremely

well in ns2 simulations. Figure 5.3 shows a plot of the average queue length vs.

the flow length. Our traffic consisted of TCP flows of a single length that arrived

according to a Poisson process. The average rate of the flows generated a load of

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 46

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
[P

kt
s]

Flow Length [Pkts]

Simulation, 5 Mb/s
Simulation, 10 Mb/s
Simulation, 25 Mb/s

M/G/1 Model

Figure 5.3: Average Queue Length for Short Flows at three Different Bandwidths

about 80% in the link. Access links had a speed of 10 Gb/s to create maximum

burstiness. We varied the length of the flows from 1 to 100 and for each length

measured over several minutes, the average length of the router’s buffer queue. This

experiment was repeated for bandwidths of 5 Mb/s, 10 Mb/s and 25Mb/s. In the

graph, we also show the average queue length as predicted by the M/G/1 model from

Chapter 4.

We can see from the graph that the model matches the actual measured average

queue length very well. More importantly, however, the results from the measure-

ments at three different bandwidths are almost identical. We measured queue occu-

pancies at line rates of up to 100 Mb/s and found no substantial difference in queue

length.

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 47

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

re
qu

ire
d

bu
ffe

r
[p

kt
s]

flow length [pkts]

Slow Access Link (500 Kb/s vs. 5 Mb/s)
Same Speed (Both 5 Mb/s)

Fast Access Link bw (50 Mb/s vs 5 Mb/s)

Figure 5.4: Effect of the Access Link Bandwidth on the Queue Length

5.3.2 Effect of Access Link Bandwidth on Queue Length

In most simulations, we assume that the access link has infinite speed. In practice,

the access link to the router is of finite speed, and might be slower than the bottleneck

link. We would expect that a slower access link would smooth out packet bursts and

reduce the length of the queues. As long as the access link is at least as fast as the

bottleneck link, this effect should be minimal. However, if the access link is slower

than the bottleneck link, the packets from a burst are spaced out on the slow access

link and arrive as individual packets at the bottleneck link, where they no longer

generate queueing.

In practice, this intuition turns out to be correct. Figure 5.4 shows for a fixed

maximum loss rate the minimum required buffer vs. the flow length. The bottleneck

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 48

link has a bandwidth of 5 Mb/s. We repeated the experiment three times, once with

access link speeds of 500 Kb/s, 5 Mb/s and 50 Mb/s. As we would expect, faster

access links require more buffering as they preserve the burstiness of TCP the best.

However, the difference between an access link that is faster than the bottleneck link

and an access link that has the same speed as the bottleneck link is fairly small.

Increasing the access link speed further does not change the results substantially. We

can, therefore, treat access links that are at least as fast as the bottleneck link as

having infinite speed. However, with a 500 Kb/s access link that is ten times slower

than the bottleneck link, we require much less buffering. This is primarily of interest

for the core of the network. Access links to a 10 Gb/s link are at 1 Gb/s or below,

which would allow us to reduce the buffer for such links by a factor of two.

5.3.3 Effect of Picking Buffers that are too Small

The goal of our model is to predict the amount of buffering needed for traffic consisting

of only short or otherwise constraint flows on an uncongested router. One important

question is what happens if we pick a wrong buffer size. Figure 5.5 shows the effect of

buffering on the flow completion time of short flows. We took a bottleneck link of 50

Mb/s and generated short flows of a fixed length that arrived according to a Poisson

process. We then measured the flow completion time of these short flows over several

minutes. We varied the arrival rate of the flows to create a load on the bottleneck

link between 10% and 100%. This experiment was repeated for buffer sizes of 10, 20,

40, 80 and the bandwidth delay product of 644 packets.

At very light loads, the average flow completion time (AFCT) is a constant 350 ms.

This is independent of buffer size as there is almost no queueing and the queue never

runs over. As load increases, so does the queue size and very small buffers increase the

probability of drops, which causes retransmits or time-outs and increases the AFCT.

Retransmits also increase the total amount of traffic sent over the bottleneck link

as now some packets have to be sent multiple times 1. This effectively increases the

utilization of the bottleneck link above the offered load. As the load increases, at

1We define the load as the amount of data the senders try to send divided by the capacity of the
bottleneck link, not as the actual data sent over the link divided by the capacity

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 49

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n
T

im
e

[m
s]

Load of Bottleneck Link

10 pkts
20 pkts
40 pkts
80 pkts

2TxC = 644 pkts

Figure 5.5: Average Flow Completion Time for short flows as a function of the Load
of the Bottleneck Link and the amount of Buffering.

some point the rate of retransmits plus new flows will surpass the bottleneck capacity

and the system will become unstable. This will happen earlier for small buffer sizes.

For a buffer of only 10 packets, load cannot increase beyond 75% before a substantial

number of flows no longer compete. Picking too small a buffer carries two penalties.

First, it will increase flow completion times and second, it lowers the critical load at

which the system becomes unstable.

In practice, this is of limited relevance. Even with buffers of only 40 packets, we

can reach up to 90% load with little increase in AFCT. For a high-speed router, 40

packets of buffering is small and probably far below what is needed for long flows.

And running a router that serves non-congestion-aware traffic at 90% would be a bad

idea as a small error in estimating the load would make the system unstable.

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 50

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400 450 500

M
in

im
um

 r
eq

ui
re

d
bu

ffe
r

[p
kt

s]

Number of long-lived flows

Minimum Buffer required for 95% Utilization
 1 x 2T*C‘/sqrt(n)

0.5 x 2T*C‘/sqrt(n)

Figure 5.6: Minimum Required Buffer for a Mix of 20% Short Flows and 80% Long
Flows.

5.4 Mixes of Flows

So far, we were looking at either only infinitely long flows, or only short flows on an

uncongested router. The next logical step is to combine the two and see if our results

still hold.

5.4.1 Buffer Requirements for Mixes of Flows

We postulated in Chapter 4 that in mixes of long and short flows, the effect of long

flows dominates. We experimentally verified that this is the case and a sample result

is shown in Figure 5.6. In this experiment, we generated 10 Mb/s of short flows that

arrived at a bottleneck link according to a Poisson process. The bottleneck link had

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 51

a capacity of 50 Mb/s, Therefore, 20% of the link’s bandwidth was at any given time,

taken up by short flows. We created a number of infinite length TCP flows that sent

data over the bottleneck link that took up the remaining 80% of the bottleneck link.

The first thing we observed is that in such a mix of long and short flows, the short

flows will always claim their share of the bandwidth with fairly minimal losses. The

reason for this is the much more aggressive multiplicative increase of the short flows

vs. the additive increase of the long flows in congestion avoidance mode.

More importantly, we see from Figure 5.6 that a buffer size of 2Tp×C√
n

is also suf-

ficient for mixes of flows. In fact, in a mix of flow, we can calculate buffer size for

both types of traffic separately and add them to obtain an upper bound of the total

buffer. As the buffering needed for short flows is much smaller than the buffering

needed for long flows, this effectively means we can calculate what fraction of the

overall bandwidth comes from long flows and then use this reduced bandwidth to

calculate the amount of buffering required. In this experiment, the delay-bandwidth

product was 4230 packets. As 80% of the traffic is from long flows, we use a reduced

delay-bandwidth product of C ′ = C ∗0.8 to calculate our minimal required buffer. As

we can see in the graph, the minimum required buffer we found experimentally fits

very well with the amount of buffering predicted by our model.

It is also interesting to see that our new rule already holds at about 150 flows.

We think that this is due to short flows causing long flows to desynchronize. In other

words, mixes of long and short flows require less buffer than traffic consisting only of

long flows.

5.4.2 Flow Completion Times for Short Flows

One argument raised against small buffers is that the higher loss rate hurts short flows

that experience time outs and retransmits. In reality, it turns out that the opposite

is true. Figure 5.7 shows the average flow completion time (AFCT) of short flows.

We started with Poisson arrivals of short flows totaling 20% of the bandwidth of a

bottleneck link. The link is shared with between one and 500 infinite-sized long-lived

flows. For each number of long-lived flows, we measured the AFCT once with buffers

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 52

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

fo
r

a
14

 p
kt

 T
C

P
 fl

ow

Number of long-lived flows

AFCT with Large Buffers (RTT*BW)
AFCT with Small Buffers (RTT*BW/sqrt(n))

Figure 5.7: Average Flow Completion Time for Large (2Tp × C) and Small (2Tp×C√
n

)
Buffers.

of 2Tp×C and once with buffers of 2Tp×C√
n

. The results show that with smaller buffers,

the flows complete much faster. This might be surprising at first, after all, smaller

buffers will cause an increase in packet drops and thus, retransmits and time-outs.

However, smaller buffers also decrease the RTT of the flows. A router with large

buffers that is congested will have full or nearly full buffers all the time. This causes

the RTT of flows to be:

RTTmax = 2TP +
Q

C
≈ 2TP +

2TP × C

C
= 4TP

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 53

With buffers of 2Tp×C√
n

the RTT will only be:

RTTmin = 2TP +
Q

C
≈ 2TP +

2TP×C√
n

C
= 2TP

(

1 +
1√
n

)

For large n, the term 1√
n

becomes very small and the RTT for small buffers is close

to only half the RTT for large buffers.

One retransmit will usually add one additional RTT to the flow completion time

of a flow. The 14 packet flow in the experiment has a length of 4 × RTT without

losses. With small buffers and a halved RTT, the flow can incur up to four retransmits

and still finish as quickly as a flow with large buffers, twice the RTT and no packet

losses. For four retransmits in a 14 packet flow, we would need a loss rate of more

than 20%! Smaller buffers can in the worst case scenario, quadruple the loss rate of

TCP vs. full buffers of one delay-bandwidth product [31]. We can therefore argue

that if the loss rate with full buffers is below 5%, smaller buffers will always lower the

AFCT.

The above calculation is an oversimplification as it ignores time-outs and the

details of the TCP retransmit algorithm. However, it seems fair to conclude that for

typical loss rates in the internet, smaller buffers will always reduce the completion

time of short TCP flows.

5.4.3 Effect of Changes in Long/Short Ratio

We have seen that our new rule-of-thumb overall holds for mixes of long and short

flows. However our model only provides us with bounds on how much buffering is

needed. Figure 5.8 shows the actual effect of changes in the ratio of short flows to

long flows on buffer requirements and the average flow completion time.

The setup is similar to the last experiment. We generated a fixed amount of short

flow traffic that utilized a certain percentage of a bottleneck link. We then added a

number of infinite-sized long lived flows and iteratively found the minimum buffer size

to meet a specific utilization goal. For this buffer size, we then measured the average

flow completion time. We repeated this for traffic that consisted of 10% short flows,

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 54

20% short flows, 30% short flows. For comparison, we also ran the experiment with

large buffers of 2Tp × C and 20% short flows.

The top graph in Figure 5.8 shows the minimum buffer required to achieve 95%

utilization for traffic consisting of 10%, 20% and 30% short flows. We can see that

our model holds well in all cases. What is surprising though is that the difference

in required buffering becomes virtually zero as soon as we are above 110 flows. The

explanation for this can be found using our short flow model. If we consider the short

flow traffic alone, without the long flows, we can determine the minimum amount of

buffering needed for the short flows. It is plotted in the graph as the horizontal line

at about y = 100. At around n = 110, the amount of buffering needed for 100%

utilization drops below this threshold. What this means is that at this point, more

and more short flows experience drops and are forced out of slow-start into congestion

avoidance mode. As we increase n, soon all flows are in congestion avoidance mode and

are effectively “long” flows. As we can see, the transition of the buffer dropping below

the short flow threshold and the differences in flow lengths disappearing coincides

very well.

With the amount of buffering being almost equal, the AFCT shown in the lower

graph of Figure 5.8 only differs by a few percent. However, in any of the three settings,

it remains much smaller than the AFCT with full buffers of 2Tp × C.

Overall, we can conclude that the amount of required buffer and the change in

AFCT is not very sensitive by small changes in the ratio of long vs. short flows.

Buffer requirements in mixes of flows are almost entirely driven by the number of

long flows in congestion avoidance mode.

5.5 Continuous Flow Length Distributions

Real network traffic contains a broad range of flow lengths. The flow length dis-

tribution is known to be heavy-tailed [18] and in our experiments, we used Pareto

distributions to model it. The flow arrival process is Poisson as in previous experi-

ments. This simulation was done with a 155 Mb/s link and RTT of approximately

100ms.

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 55

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160 180

M
in

im
um

 R
eq

ui
re

d
B

uf
fe

r
[p

kt
s]

Number of long flows

10% Short Flows, Min Buffer
20% Short Flows, Min Buffer
30% Short Flows, Min Buffer

Large Buffers
1 x 2T*C/sqrt(n)

0.5 x 2T*C/sqrt(n)
Minimum Buffer for Short Flows

 400

 450

 500

 550

 600

 650

 700

 750

 800

 0 20 40 60 80 100 120 140 160 180

M
in

im
um

 R
eq

ui
re

d
B

uf
fe

r
[p

kt
s]

Number of long flows

10% Short Flows, Min Buffer
20% Short Flows, Min Buffer
30% Short Flows, Min Buffer

Large Buffers

Figure 5.8: Utilization (top) and Average Flow Completion Times (bottom) for dif-
ferent Ratios of Long and Short Flows

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 56

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 50 60 70 80 90 100

N
o.

 o
f F

lo
w

s
in

 C
A

 M
od

e

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100

U
til

iz
at

io
n

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 50 60 70 80 90 100

Q
ue

ue
 [p

kt
s]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50 60 70 80 90 100

D
ro

p
R

at
e

Time [seconds]

Figure 5.9: Number of Flows (Top), Utilization, Queue Length and Drops (Bottom)
for Pareto Distributed Flow lengths with large Buffers of 2Tp × C

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 57

Figure 5.9 shows what happens for Pareto distributed flow lengths with a large

buffer of size 2Tp×C√
n

. We want to get an idea of the worst case congestion and we chose

a load of just above 100%. A load above 100% might seem like a hopeless choice as it

can not possibly be served by the router. However, in practice it simply means that

a few heavy flows will not terminate for the duration of the experiment.

The top graph shows the number of flows in congestion avoidance mode. It fluctu-

ates between 60 and 160 flows with an average of about 110 flows. The second graph

shows the utilization, it was 100% for the entire duration of the experiment. The

queue length shown in the third graph fluctuates between 800 and the maximum of

1600 packets. It never drops below 800 packets. Clearly, this buffer is too large and

could be reduced by at least 800 packets. The bottom graph shows the loss rate for

each 50ms interval. Drops occur only in some intervals, however, for some intervals,

the drop rate goes as high as 50%. On average, the loss rate is around 1%. This is a

very high loss rate for TCP however, it still works well at this rate.

To pick a reduced buffer size, we need to find the number of concurrent long flows

n. Looking at the top graph of Figure 5.9, we pick n = 100 and size the buffer to
1
10

th of its original size or 165 packets. Note that this is not an intuitive choice. The

buffer fluctuation that we can see in the queue length graph of Figure 5.9 is about

800 packets.

It does turn out to be the correct choice though. The top graph of Figure 5.10

shows the number of concurrent flows with the smaller buffers. We can see that the

number of flows stays above 100 all the time, justifying our choice of n = 100. The

second graph in Figure 5.10 shows the utilization. We can see that the utilization is

close to 100% almost all the time. Averaging shows that the utilization is above 99%.

The queue length shown in the third graph oscillates between zero and the buffer size

of 165. This tells us that the buffer is fully used and gives us an indication that we

are probably close to the minimum buffer. The drop rate shown in the lowest graph

is quite different from the large buffer case. Overall, the drop rate is now higher

(but still a low single digit percentage), however more intervals have drops and the

maximum drop rate in a single interval is lower.

The most important result for this experiment is that we can achieve a utilization

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 58

 0

 50

 100

 150

 200

 250

 300

 50 60 70 80 90 100

N
o.

 o
f F

lo
w

s
in

 C
A

 M
od

e

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100

U
til

iz
at

io
n

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 50 60 70 80 90 100

Q
ue

ue
 [p

kt
s]

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 50 60 70 80 90 100

D
ro

p
R

at
e

Time [seconds]

Figure 5.10: Number of Flows (Top), Utilization, Queue Length and Drops (Bottom)
for Pareto Distributed Flow lengths with small Buffers of 2Tp×C√

n

CHAPTER 5. EXPERIMENTAL VERIFICATION WITH NS2 59

of 99% with buffers of size 2Tp×C√
n

. The main change from the long flow case is that

now we have to measure or estimate the number of long-lived flows. We have also

seen that smaller buffers increase the overall loss rate and decrease the probability of

very large loss events.

One might be surprised that the number of long flows is this large for Pareto dis-

tributed traffic. It has been argued [19] that in a network with low latency, fast access

links and no limit on the TCP window size, there would be very few concurrent flows.

In such a network, a single very heavy flow could hog all the bandwidth for a short

period of time and then terminate. But this is unlikely in practice, unless an operator

allows a single user to saturate the network. And so long as backbone networks are

orders of magnitude faster than access networks, few users will be able to saturate

the backbone anyway. Even in our simulation where we have unlimited window sizes

and very fast access links, TCP is not capable of utilizing a link quickly due to its

additive increase behavior above a certain window size. Traffic transported by high-

speed routers on commercial networks today [18, 2] has 10s of 1000s of concurrent

flows and we believe this is unlikely to change in the future.

5.6 Summary of the ns2 Simulation Results

To summarize, we found in this chapter that our models hold well for a wide range

of network parameters and traffic characteristics. We have seen that in traffic that

consists of flows of different lengths, the effect of long flows dominates. In practice,

we can size the buffer correctly by finding the number of flow in congestion avoidance

mode and using it as the n from our long flow model.

Chapter 6

Experimental Results on Physical

Routers

The last Chapter examined the experimental verification of our models using ns2

simulation. This Section verifies our model with experiments performed on actual,

physical routers with TCP traffic generated by real TCP stacks.

While ns2 gives us valuable insights into how buffers and network traffic interact,

it also fails to capture a number of characteristics of real networks:

• Synchronization. As previously discussed in Section 3.1, synchronization in

ns2 is very different from synchronization on physical routers. In a laboratory

experiment of a shared memory router, three TCP flows exhibited no signs of

synchronization.

• Packet Timings. In ns2, all packet timings are deterministic. In a real net-

work, there are many sources of randomization and burstiness such as context

switching or busy intervals on end hosts or shared memory routers, routing

messages, retransmits of packets by the link layer, etc.

• Router Architecture. ns2 assumes an idealized output queued router. Real

routers can incur additional queueing delay due to congestion of the switching

mechanism.

60

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 61

• Other Protocols. We assume only TCP flows with some length distribution

in our simulation. Real networks will have a variety of traffic patterns and

protocols.

The first set of experiments tries to evaluate the effect of the first three of the above

issues. The experiments were done on a Cisco GSR [36] router in a laboratory setting

at the University of Wisconsin-Madison. This setup allows us to create specific traffic

patterns and directly compare the predictions of our model and ns2 with a physical

router.

The other two experiments were done on live production networks. The key goal

here is to verify the effect of different applications, protocols, packet types and usage

patterns. The Stanford experiment measures performance of a congested router. The

Internet2 experiment verifies our results for an uncongested router.

6.1 Laboratory Experiment on a CISCO GSR

6.1.1 Introduction and Setup

The goal of this experiment is to compare quantitatively our buffer model using a

physical router and traffic generated by real TCP/IP stacks from current operating

systems in a laboratory setting where we have full control over all parameters.

The topology of the extperimental network is as follow. Traffic is generated by a

cluster of PCs running either Linux or BSD operating systems. Network traffic from

the PCs is aggregated using a Cisco 6509 Ethernet switch with Gigabit Ethernet links.

A Gigabit Ethernet link connects the switch to a Cisco Catalyst 12410 router [36]

(this platform is also known as GSR). The GSR is connected to a second identical

GSR with a 4 x OC3 POS “Engine 0” line card that switches IP packets using POS

(PPP over Sonet) at 155Mb/s. Between the two GSRs is a delay generator that

allows us to set arbitrary transmission delays between the routers. The second GSR

distributes traffic via a second Ethernet switch to a number of Harpoon TCP traffic

sinks. A separate network to the routers is used to poll data from the routers using

SNMP commands.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 62

The 1Gb/s links of the network aggregating traffic is, by a factor of 60, faster

than the speed of the bottleneck link. Congestion will therefore, only happen on GSR

interface serving the OC3 line. Reverse traffic consists only of ACK packets and will

not cause congestion anywhere.

TCP traffic was generated using the Harpoon traffic generator [41]. Harpoon

allows us to specify flow arrival patterns as well as flow lengths. The flows are real TCP

flows that react to congestion and will terminate once all data has been transmitted.

For the delay generation, we originally used a PC running the Dummynet [34]

network simulator. However, after running a first set of experiments, we found that

Torment would sometimes queue traffic for several milliseconds, and then send it as

a burst. The result was traffic with very different characteristics than the original

network traffic. For example, the mean queue length was several times longer than

without Dummynet. We replaced Dummynet with an Adrea delay generator and the

burstiness in the traffic disappeared.

The goal of the experiment is to verify quantitatively both the long flow as well

as the short flow model. For this, we need to measure:

• The capacity C. The line rate of an OC3 is 155 Mb/s, however after PPP and

SONET encoding, we measured an effective throughput of 149.26 Mb/s. This

is very close to the theoretical value.

• The number of flows, flow arrival pattern and overall load is directly controlled

by the Harpoon traffic generators.

• The round-trip propagation delay is controlled by adjusting the AdTech Delay

Generator and measured end-to-end.

• Utilization of the bottleneck link is measured on the GSR itself via two mecha-

nisms: Netflow and byte counters on the interface that are polled via SNMP.

• The queue length Q can be polled on the GSR via the DOS command prompt.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 63

6.1.2 The Cisco Catalyst 12000 Router

The Cisco 12000 [36] (or GSR) series of routers are designed to switch traffic at line

rates of 10 Gb/s and primarily targeted for use in the core of the network and large

edge nodes. The GSR is build as a central switching fabric that is connected to

a number of line cards. An additional controller card is used for central functions

such as routing protocols and configuration. For a complete description of the GSR

architecture see [7].

A slightly simplified path of a packet passing through the GSR router takes the

following path:

• Packet arrives on the physical interface. The line card inspects the packet and

determines the packet’s destination line card.

• The packet is queued in the input queue (called “ToFab” or ToFabric buffer on

the GSR) until the switching fabric becomes available.

• The switching fabric switches the packet to the output line card.

• On the output line card, the packet is queued in an Output Queue (called

FromFab buffer on the GSR).

• Once the output interface becomes available, the packet is de-queued and sent

out on the network.

The switching fabric of the GSR is designed to switch traffic at rates of up to 10 Gb/s

per line card. For our experiment, traffic through the router is limited to 155 Mb/s

and we would expect that the switching fabric is never the bottleneck. We verified

this experimentally and found the ToFab buffers to be empty all of the time.

The GSR keeps different buffer pools for different packet lengths. The relative

size of these pools is centrally determined for the whole router and depends on the

MTU sizes of the connected interfaces. This “carving” process takes place whenever

a line card is added or removed or MTU sizes are changed. As we can not control the

carving process, it is difficult to limit the buffer size directly.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 64

On the “Engine 0” line card that we are using, it is possible to set directly the

maximum queue lengths of the FrFab queue 1.

During our measurements, we initially were puzzled by the fact that we seemed to

overestimate the queue length by a constant offset of about 43 packets or 64 kBytes.

After contacting the router manufacturer, we found out that the GSR 4xOC3 Engine

0 line card has a FIFO buffer of 128 kByte on the interface management ASIC, of

which in our setup the first 64 KByte are used. With an MTU of 1500 Bytes, this

creates an additional 43 packets of buffering. Packets in this buffer are not visible to

IOS and therefore explain the under reporting.

With the exception of the utilization, measuring the data we need on the GSR is

fairly simple. The GSR allows us to poll directly the queue length of the ToFab and

FrFab queue on the line card. Measuring utilization however, is difficult. The GSR

has packet and byte counters, which together with a time stamp can convert into line

rates. The problem is that the counters are on the line cards while the clock providing

the time stamp is on the central controller. The counter on the line cards is sent to the

central controller only once every 10 seconds. We tried polling the counters exactly

once every 10 seconds, however, the timing jitter of the SNMP commands introduces

a statistical error of several percent for each measurement.

We address this problem by a two-pronged approach. First, we measure utilization

over several minutes, which reduces the statistical error to about 0.1%. Second, we

use netflow records [11] to get a second estimate for the utilization. If Netflow differs

too much from the SNMP byte counter measurements, we discard the experiment.

6.1.3 Results and Discussion

Long Flows

Figure 6.1 shows the results of the long flow measurements. The router memory was

adjusted by limiting the length of the interface queue on the outgoing interface. The

buffer size is given as a multiple of RTT×C√
n

, the number of packets and the size of the

1Engine 0 line cards accept the IOS“TX-Queue limit” command, reportedly current engine 1 and
engine 2 line cards do not support this feature. On these more modern cards, it might be possible
to achieve the same effect with class-based shaping. See Section 6.2 for a detailed description.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 65

TCP Router Buffer Link Utilization (%)
Flows RTT×BW√

n
Pkts RAM Model Sim. Exp.

100 0.5 x 64 1 Mbit 96.9% 94.7% 94.9%
100 1 x 129 2 Mbit 99.9% 99.3% 98.1%
100 2 x 258 4 Mbit 100% 99.9% 99.8%
100 3 x 387 8 Mbit 100% 99.8% 99.7%
200 0.5 x 46 1 Mbit 98.8% 97.0% 98.6%
200 1 x 91 2 Mbit 99.9% 99.2% 99.7%
200 2 x 182 4 Mbit 100% 99.8% 99.8%
200 3 x 273 4 Mbit 100% 100% 99.8%
300 0.5 x 37 512 kb 99.5% 98.6% 99.6%
300 1 x 74 1 Mbit 100% 99.3% 99.8%
300 2 x 148 2 Mbit 100% 99.9% 99.8%
300 3 x 222 4 Mbit 100% 100% 100%
400 0.5 x 32 512 kb 99.7% 99.2% 99.5%
400 1 x 64 1 Mbit 100% 99.8% 100%
400 2 x 128 2 Mbit 100% 100% 100%
400 3 x 192 4 Mbit 100% 100% 99.9%

Figure 6.1: Comparison of our model, ns2 simulation and experimental results for
buffer requirements of a Cisco GSR 12410 OC3 line card.

RAM device that would be needed. We subtracted the size of the internal FIFO on

the line-card (see Section 6.1.3). Model is the lower-bound on the utilization predicted

by the model. Sim. and Exp. are the utilization as measured by a simulation with

ns2 and on the physical router respectively. For 100 and 200 flows, there is, as we

expect, some synchronization. Above that the model predicts the utilization correctly

within the measurement accuracy of about ±0.1%. ns2 sometimes predicts a lower

utilization than we found in practice. We attribute this to more synchronization

between flows in the simulations than in the real network.

The key result here is that model, simulation and experiment all agree that a

router buffer should have a size equal to approximately RTT×C√
n

, as opposed to RTT×C

(which in this case would be 1291 packets). However, we can also see that our model

predicts the transition point where utilization drops from 100% to values below 100%

fairly accurately.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 66

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

P
(Q

 >
 x

)

Queue length [pkts]

FIFO

Exp. Cisco GSR if-queue
Exp. Cisco GSR buffers

Model M/G/1 PS
Model M/G/1 FIFO

Figure 6.2: Short Flow Queue Distribution of 62 packet flows measured on a Cisco
GSR compared to model prediction

Short Flows

In Section 4.1, we used a M/G/1 model to predict the buffer size we would need

for short-lived, bursty TCP flows. To verify our model, we generated short-lived

flows and measured the probability distribution of the queue length of the GSR. We

repeated the experiment for flow lengths of 2, 14, 30 and 62 packets. The load for all

three experiments was around 85%. For each case, we measured flow length using two

different methods. First, we measured the number of packets in the output queue.

Second, we measured the overall amount of buffering that was occupied. In practice,

both methods agree very well. All measured queue lengths have to be adjusted by 43

packets to account for the FIFO buffer in the interface management chip.

Figure 6.2 shows the results for 62 packet flows compared to our M/G/1 model and

the M/G/1/PS mode. The M/G/1 model matches the experimental data remarkably

well. As expected, the M/G/1/PS model overestimates the queue length but can be

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 67

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

P
(Q

 >
 x

)

Queue length [pkts]

Exp. Cisco 12000 if
Exp. Cisco 12000 buf

M/G/1 Eff. BW 2nd
M/G/1 PS

Figure 6.3: Short Flow Queue Distribution of 30 packet flows measured on a Cisco
GSR compared to model prediction

usable to find an upper bound for the queue length.

Figure 6.3 and Figure 6.4 show the same graph for flows of 30 packets and 14

packets respectively. For 30 packets, the model still matches well, however it tends to

overestimate the queue length. For 14 packet flows, we measured a non-empty queue

for less than 1% of our samples. The built in FIFO was able to absorb most of the

bursts. For six packet flows, the queue length was zero for almost all our samples.

The reason for the overestimation of the queue size for small flow lengths is most

likely randomization and smoothing in the switch that aggregates the traffic as well

as in the TCP senders and receivers. Even a slight spreading out of bursts can reduce

the queue length sufficiently to push it below the 43-packet limit where it is invisible

to our measurement.

Overall, we can see though that our M/G/1 model is a reliable tool to estimate

queue distribution and the amount of buffering that is required to achieve certain loss

guarantees. We see that it not only works in a simulation scenario but also for a real

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 68

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

P
(Q

 >
 x

)

Queue length [pkts]

Exp. Cisco 12000 if
Exp. Cisco 12000 buf

M/G/1 Eff. BW 2nd
M/G/1 PS

Figure 6.4: Short Flow Queue Distribution of 14 packet flows measured on a Cisco
GSR compared to model prediction

physical router with traffic generated by physical network hosts.

6.2 Stanford Network Experiment

The Stanford Experiment verifies our model for a congested router serving traffic from

live users in a production network. In the experiment, we throttled the bandwidth of

the Cisco VXR 7200 router that forwards internet traffic to the student dormitories at

Stanford. The VXR is a shared memory router that has very different properties than

the GSR described in the last Section. Specifically, normal operation packets can be

buffered in a number of different stages. A major part of this Section is devoted to

understanding the VXR switching architecture and to explain how we can accurately

control the amount of buffering that is used. The key result of this experiment is that

even for a very diverse traffic mix, a router can achieve close to full link utilization

with extremely small buffers.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 69

6.2.1 Introduction and Setup

Stanford University routes traffic from and to on-campus student residences separately

from traffic that is generated by administrative, educational and academic hosts.

Residential traffic is aggregated via a 100 Mb/s network with Cisco 5000 Ethernet

switches. The gateway to the internet is a Cisco 7200 VXR router with a 100 Mb/s

link to one of the Cisco 5000 switches as well as a 100 Mb/s connection to a commercial

ISP. Between the switch and the Cisco 5000, a Packeteer packet shaper is used to limit

the outgoing bandwidth. A schematic outline of the topology is shown below.

----100 Mb

100 Mb 100 Mb /

Internet <------> Cisco 7200 VXR <---I--> Cisco 5000 ----100 Mb

| \

Packeteer ----100 Mb

The 100 Mb/s link from and to the internet is saturated a good part of the day.

Traffic is from a mix of different applications including Web, FTP, Games, Peer-to-

Peer, Streaming and others. The number of flows that are active varies by the time

of day from 100s to at least 1000s of concurrent flows. Traffic is mainly TCP as

well as some UDP. This traffic mix is far away from the idealized assumptions in the

rest of the paper and fairly similar to network traffic on large commercial network

backbones.

Between the VXR and the Cisco 5000 switch is a Paketeer packet shaper. This

shaper can be used to throttle flows in both directions. For the experiment, the

bandwidth of the router was below the trigger bandwidth of the Packeteer, which

was basically inactive.

The goal of our experiment is to observe a congested router serving a large number

of flows. The above setup is not directly usable for this purpose as the Cisco 7200

never experiences congestion - its input and output capacity is the same. In order to

generate congestion at the router, we throttle the link from the Cisco 7200 router to

the Cisco 5000 Ethernet switch to a rate substantially below 100 Mb/s. How this is

done is explained in detail below.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 70

The goal of the experiment is to verify if the 2T × C/
√

(n) hypothesis holds. In

order to do this, we measure before the start of the experiment:

• The capacity C. In practice, we will throttle the router’s outgoing interface to

a specific capacity C and leave it constant for the duration of the experiment.

• The number of flows n. We can estimate this via the Netflow mechanism of the

Cisco router.

• The round-trip propagation delay 2T. We cannot measure or estimate the RTT

distribution in a meaningful way and instead assume a typical average for back-

bone networks.

All of the above are assumed to be constant for the time of the experiment. During

the experiment, we change the amount of buffering on the router, and measure the

following parameters:

• Utilization of the bottleneck link.

• The queue length Q. This is mainly to verify that the router was congested and

operating with full buffers.

Most of the measurements that we do are performed on the router. Additionally,

we use the router for creating congestion. In order to set up a meaningful experiment

and understand the results, it is necessary to understand how the VXR operates.

6.2.2 The Cisco 7200 VXR

The Cisco 720x VXR is a shared memory router. It has a central network processor

(Cisco NPE-x00 series) and up to six interface cards that are all mapped into a shared

memory space. Packets are transferred from the interface cards to memory via three

PCI busses. Two PCI busses serve three interface cards each, and one serves the

IO controller, which has an additional network interface. The VXR runs Cisco’s

IOS operating system that manages all router components directly. For a detailed

architecture description see [7].

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 71

In our idealized router model, a packet is only queued once in a router. As we will

see, the reality on the VXR is far more complex. As we have seen in the experiments

for the GSR, it is important to understand where queueing can occur accurately for

all buffering. The goal of this Section is to understand where in the VXR packets are

queued and how these buffers are sized.

To understand fully the VXR, we ran a number of tests on a VXR in a laboratory

setting before conducting the actual experiment on the VXR in the Stanford network.

Packet Switching Architecture

Before we explain the buffer architecture of the VXR, we need to discuss its packet

switching architecture. Incoming packets on the VXR are copied into shared memory

by the line card via DMA. Once the packet is copied, it triggers an interrupt that

eventually causes the packet to be switched to the right outgoing line card. The VXR

uses a number of different switching methods, depending on the packet and router

state:

• Process switching. This is switching that is done completely in software in a

special IOS process, no pre-cached information is used.

• Fast Switching. Again everything is done in software but a route cache is used

and the packet is switched in the interrupt handler that was triggered by the

received packet.

• Optimum switching. For IP packets only, there is a special optimized version

of Fast switching called Optimal switching. It uses a faster caching method

(M-Tree vs. Binary Tree)

• Cisco Express Forwarding (CEF). Basically, optimized Optimum Switching with

an M-Trie instead of the M-Tree.

• Netflow switching. Netflow stores information for each flow it sees and uses this

cached information to make very fast switching decisions. Netflow was switched

off on the router used for the experiment.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 72

The type of switching affects the path of the packet through the router and the

OS as well as the maximum rate the router is able to achieve. In practice, the router

in the experiment forwarded the vast majority of packets using CEF. In this case, the

usual path of a packet is:

1. Packet is received by the network interface and transferred (via PCI bus DMA)

into the Tx Ring. The Tx Ring is circular list of pointers to buffers. If the Tx

Ring is full, the packet is dropped.

2. If the packet needs to be switched in software, it is moved to the input queue.

As we use For CEF and Netflow switching, this step is usually skipped.

3. An interrupt is triggered and the buffers are removed from the Tx Ring. If the

packet can be switched with anything but processor switching, the MAC header

is rewritten and the packet is moved to an output queue. If no virtual output

queueing is used, the output queue is one of the outgoing interface (and the

next step is skipped). In our case, we use class-based VOQs and the packet is

moved to the output queue of its class. If either type of output queue is full,

the packet is dropped.

4. If virtual output queues (e.g. different queues for different classes of traffic) are

used and a packet arrives at the head of the queue, it is switched to the output

queue of the interface.

5. Once there is space available in the Tx ring, the packet is removed from the

output queue to the Tx Ring.

6. The Tx Ring gets DMA’d to the interface card and the packet is transmitted.

Generally, packets never change their location in memory, all moving is done by

putting pointers to the packet data into different queues. Process switching is the

exception to the rule as packets have to be reassembled from fragments (see the buffer

pool description below).

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 73

Buffer Pool Architecture

A further complication is that the 7200 uses particles instead of packets. For standard

IP packets, a particle is approximately 745 bytes or half the most widely used Ethernet

MTU size of 1500. Buffer pools contain either particles or full buffers (1500 bytes),

but never both.

The 7200 keeps several different types of buffer pools. The most important ones

are:

Private Particle Pools These are used to replenish the Rx rings after packets

have arrived. After a packet has been sent from the Tx Ring, the buffer is returned to

the private pool of the interface. That the buffers are associated with the incoming

interface is a major difference compared to the idealized output queued model or

central fabric routers such as the GSR. If we want to prevent a shortage in buffers, we

have to increase the private pool of the incoming interface, not the outgoing interface.

Normal Particle Pools. These are global particle pools not associated with an

interface. They are used as a back-up if private pools run out.

Public Pools. These pools are used to assemble packets temporarily that have

to be switched in software. There are separate pools (small pool, middle pool, big

pool) corresponding to typical packet lengths (40,...,1500,... bytes). Public Pools are

global and are not associated with a particular interface.

All buffer pools are fairly small by default. If a buffer runs low, additional particles

or buffers are added by IOS from the overall memory pool. If the CPU load of the

router becomes too high, the software process that performs the buffer resizing can

get starved and buffers might be too small, which eventually can cause additional

packet drop. We tested the behavior of IOS both in a lab setting as well as on the

real router, and at the line speeds that we are interesting in, IOS was always fast

enough to re-size buffers as needed.

For our experiment, we want to limit the total amount of buffering available to

packets through the router. Due to the VXR’s architecture, it is impossible to do

this by simply limiting the overall amount of memory. The dynamic allocation of

memory between queues, the queues minimum sizes and the different paths through

the queues make this impossible. Instead, our strategy will be to limit queue length

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 74

directly, which for some queues we can do via IOS configuration commands.

Rate Limiting

In the experiment, we want to limit the rate of the VXR for two reasons. First, we

need to throttle the bandwidth of the bottleneck link and create congestion in case

there is not enough traffic. Second, by throttling the bandwidth substantially below

the interface bandwidth, we can keep some of the internal queues in the router empty

all of the time, which simplifies our analysis.

In a real router with limited buffers, the sending rate is limited by the outgoing

hardware interface. Throttling the hardware interface directly is not possible for

the VXR. However, we can rate limit the sending rate in software using Cisco IOS.

Depending on how we do this, we will cause queueing in one or several of the queues

described above. Understanding the details of how queueing works and which queues

different methods for rate limiting use, is crucial to understand the results of the

experiment.

In Cisco IOS, there are two approaches for reducing the sending rate of an interface:

Policing and Shaping [37]. Policing (e.g. CAR, class based policing) drops packets

that exceed a maximum rate selectively (usually based on a token bucket rule), but it

never queues packets. This is very different from what a router with limited memory

would do. Measuring router performance using policing will give us little insight in

the behavior of a router.

Traffic Shaping (e.g. GTS, class-based shaping) first queues packets, and then

drops packets based on the length of the queue. This is identical to what a router

with limited memory would do.

The simplest shaping mechanism supported by IOS is General Traffic Shaping

(GTS). It works on all IOS versions and can do simple rate limiting on most types of

interfaces. The problem is that according to Cisco documentation, it is incompatible

with Netflow [40]. In our laboratory setting, it did not limit sending rates when

Netflow was turned on.

The second mechanism is Class-Based Shaping [39]. Class based shaping allows

is to divide traffic into classes of packets. Each class can be queued separately and

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 75

priorities between classes can be defined. Class based shaping uses its own output

queue in addition to the standard output queue described above. Queue length can

be adjusted with an IOS command. In our case, we configure a class that contains

any type of packet and limit this class to our target rate. Configuration snippets can

be found in Appendix A.5.

In addition to the queue, class-based shaping uses a token bucket to limit the

sending rate. For our experiment, we are only interested in the buffering effect due to

the router’s queue and would like to set the token bucket size to zero (or one packet).

In practice however, IOS does not allow us to set a token bucket below 10ms. This

effectively creates additional buffering of 10ms multiplied with our throttled interface

rate.

The queues that Class-Based Shaping uses, come before the interface’s output

queue and the TX Ring. If the output interface is the bottleneck, the effective queue

length is the sum of all three queue lengths. In our case, however, the rate defined by

the class-based shaping (<< 100 Mb/s) is below the rate of the output interface (100

Mb/s). We can thus expect the output queue and the TX Ring to be empty at any

given time. We verified this in an experiment with a VXR in a laboratory setting.

We throttled a 1 Gb/s link down to 100 Mb/s and queried the TX Ring occupancy

and output queue length. Except for packets due to the minimum token bucket size,

both were empty or contained a single packet all the time.

Data Capture on the VXR

Ideally, we would have liked to measure network data using specialized measurement

equipment in the network. In practice, doing so is difficult in a production environ-

ment. However, it turns out that we can capture all data that we need via the console

of the router. Below we outline how this is done for each data type and what level of

accuracy we can expect.

Link Capacity C. In the experiment, we set the link capacity using class-based

shaping. In theory, this allows us to specify precisely a number of bits/s. We measured

the accuracy of the shaped rate in a laboratory setting and the rate limiting in practice

seems to be very accurate with an error far below one percent.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 76

Number and type of flows. IOS has a feature called Netflow [11] that tracks

all flows passing through a router and collects statistics about these flows. What

we need for our experiment is the number of concurrent long-lived flows. Netflow is

not able to provide this information directly, however we are able to get an estimate

indirectly.

First, we measure the number of flows that are active over a 10 second interval.

We do this by resetting the Netflow counter, and then dumping Netflow statistics.

This count will be higher than the number of long-lived flows, as it includes short

flows that were only active for a small fraction of the time, however it provides an

upper bound. Netflow also gives us statistics about the type of flows (e.g. protocol,

port numbers), the average number of packets per flow, and the average duration per

flow. Using this additional information, we can estimate what percentage of flows

were long lived. While this method is not very precise, we can use it to get a lower

bound on the number of flows, which allows us to pick a sufficiently large buffer for

the router.

Utilization. IOS automatically collects for each interface the rate in bits/s and

packets/s. We tested the accuracy of this rate and found it to be unsuitable for our

experiment. The reason for this is shown in Figure 6.5, which shows the time evolution

of the measured rate in packets and bytes. At time zero, we saturate an interface

of a previously idle router that is throttled to 1 Mbit/s and after about 23 minutes,

we stop the traffic. First, we can see that the router uses a geometrically weighted

average. This means we would have to run our experiment over long periods of time

to achieve a stable state. Additionally, the rate calculated from the packet rate and

the byte rate differ substantially and take different amounts of time to converge. We

also found in a different experment that the convergence depends on the line rate.

A second measurement mechanism on the router are packet and byte counters on

the interfaces. These counters have the advantage that they are exact, however we

need to obtain the accurate time that corresponds to a counter value. On the VXR,

the interface counter and the clock are both accessible directly by IOS running on

the controller. In a lab setting, this method proved to be very accurate, with errors

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 77

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 5 10 15 20 25 30

B
an

dw
id

th
 [B

its
/s

]

Time [minutes]

Cisco IOS "5 Minute Average" Bandwidth Measurement

BW in Packets
BW in Bits/s

Theoretical BW

Figure 6.5: “average” sending rate of a router as measured by IOS. Actual sending
pattern was an on/off source. The reported byte based rate and the packet based
rate differ substantially.

below one percent over times of tens of seconds 2.

Queue length. The various queues of the router can all be monitored via IOS.

We can only measure the current occupancy, but not averages or time evolution of

queues. Queue length reporting for class-based-shaping queues proved to be unreliable

in practice. Figure 6.6 shows the cumulative probability distribution of the class-

based-shaping queue of a router. The maximum queue length was configured to be

40 packets, however the router reports that this length is frequently exceeded. We

confirmed this behavior over a wide range of loads and bandwidths.

The above deviation can in a simple model have two causes. Either the queue

length is misreported, or the queue limit is not enforced. To test this, we shaped a

2This way of measuring rates is only possible on a shared memory router. On the GSR, packet
counters are on the line cards and are only sporadically transmitted to the controller. The time
when a packet count was transmitted can only be determined within a few seconds.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 78

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

Queue Length [Packets]

CDF Queue Length as measured by Cisco IOS

Configured Q_Max = 40

Prob(Q>X)

Figure 6.6: CDF of the class-based-shaping queue length reported by IOS on a VXR
router. The maximum queue length was configured to be 40 packets, however the
router reports queue lengths above this value.

network interface to 1 Mb/s and sent a TCP stream over a 1 Gb/s access link. The

result was congestion on the 1Mb/s link with almost all outstanding packets in the

router’s buffer. In this experiment, the flow quickly reached its maximum window

size of 42 packets (65,536 Bytes), which were all queued in the router. The reported

queue length again frequently exceeded 40 packets and one data point exceeded 80

packets. We then reduced the queue length first to 43 packets and then to 40 packets.

At 43 packets, the flow was unaffected, however at 40 packets, it would lose packets

as the queue would overflow. This experiment suggests that the queueing mechanism

works correctly, and it is only the reporting of the queue length that is incorrect.

In practice, we can use queue length measurements on the VXR only as qualitative

data points. They give us a good idea of the typical queue lengths, however exact dis-

tribution as well as minimum and maximum values do not match other experimental

evidence.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 79

Packet Length 1-32 64 96 128 160 192 224 256 288 320
Probability .001 .522 .034 .021 .012 .007 .009 .005 .004 .004

Packet length 352 384 416 448 480 512 544 576 1024 1536
Probability .004 .006 .004 .003 .003 .003 .005 .011 .039 .293

Figure 6.7: Packet length statistics for the router in the experiment. Packet lengths
are in bytes.

6.2.3 Experiment and Results

The actual experiment on the router was done during a maintenance window. At

this time, both incoming and outgoing rate of the router were around 30 Mb/s. We

throttled the incoming rate to 20 Mb/s using class-based shaping to create congestion.

For the detailed IOS configuration, see AppendixA.5.

Packet Length

We need the average packet length to convert delay bandwidth product into a mean-

ingful number of packets. Statistics on the packet length are collected by Netflow.

The data generated by Netflow is shown in Figure 6.7. Half of the packets are between

32 and 64 bytes, these are TCP ACKs as well as games, real-time applications and

port scans. 29% of the packets are packets of maximum length, these are typically

from long-lived TCP flows from the data we calculate and average packet size of 557.1

bytes.

Bandwidth Delay Product

We cannot easily measure the RTT of flows through the router, instead we use the

common 250ms assumption. With the 20 Mb/s throttled bandwidth and average

packet size from above, this gives us a delay bandwidth product of:

2T × C = 20Mb/s × 250ms = 5Mbit = 1121Pkts × 557.1Bytes (6.1)

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 80

Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)

-------- Flows /Sec /Flow /Pkt /Sec /Flow /Flow

TCP-Telnet 4397974 1.0 36 490 37.7 10.3 23.9

TCP-FTP 15551970 3.6 3 172 14.4 4.2 23.5

TCP-FTPD 3168663 0.7 103 856 76.1 16.5 22.5

TCP-WWW 1389348486 323.4 16 752 5396.4 4.1 21.9

TCP-SMTP 2112872 0.4 3 131 1.7 10.5 24.9

TCP-X 919732 0.2 204 631 43.8 43.1 19.9

TCP-BGP 318326 0.0 10 190 0.7 25.4 19.2

TCP-NNTP 3192112 0.7 186 956 138.4 5.6 24.5

TCP-Frag 375573 0.0 23 262 2.0 13.0 23.4

TCP-other 6766607723 1575.4 11 495 17907.5 15.5 19.8

UDP-DNS 3206553 0.7 3 65 2.3 4.5 24.3

UDP-NTP 2101758 0.4 1 76 0.6 3.2 24.0

UDP-TFTP 22222 0.0 1 108 0.0 0.9 26.1

UDP-Frag 374985 0.0 426 1060 37.2 46.6 23.0

UDP-other 2879140323 670.3 4 204 2861.6 5.7 21.9

ICMP 729060088 169.7 1 48 219.0 0.9 28.6

IGMP 65 0.0 28 1447 0.0 0.1 29.5

IPINIP 4925 0.0 11 511 0.0 46.6 13.8

GRE 313657 0.0 492 377 35.9 63.4 20.2

IP-other 1305636 0.3 132 489 40.1 26.7 20.6

Total: 11801523643 2747.7 9 516 26816.2 10.9 21.1

Figure 6.8: Long term netflow statistics for the router used in the experiment

Number of long-lived Flows

Before the actual experiment, we measured that during a 10 second interval, about

3400 flows are active. This includes long-lived flows, as well as short-lived flows,

real-time applications and port scans. To estimate what percentage of these flows

are long-lived flows, we use Netflow statistics gathered by the router. The output of

Netflow on the router used for the experiment is shown in Figure 6.8. The top three

categories generate more than 90% of the traffic. These categories are:

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 81

Type pkt/s pktsize Mb/s % of BW

TCP-WWW 5396 752 32.46 30.0%

TCP-Other 17907 495 70.91 65.6%

UDP-Other 2861 204 4.67 4.3%

This adds up to a total bandwidth of 106 Mb/s. This makes sense as this is

the bi-directional average for a 100 Mb/s link that is saturated during the day and

underutilized at night.

If we care about what flows are competing for bandwidth, we can essentially

ignore UDP. UDP flows are real-time applications such as games, streaming and port

scanning tools. All of these traffic sources usually do not respond to congestion.

Additionally, they compromise only 4.3% of the overall traffic.

The TCP-WWW flows are HTTP flows generated by web browsers or web services.

They have an average length of only 16 packets. Therefore, the average http flow will

never leave slowstart. We now try to estimate how many TCP flows we have in a 10-

second interval. Web traffic is 30bytes. The number of packets per second generated

by web flows is thus:

20Mb/s × 0.3 = 750kByte = 1000pkts/s (6.2)

To verify the rate, we compare this to the rate reported by Netflow. Netflow

reports 5400 packets/s for a traffic rate of 106 Mb/s. As we have only a rate of 20

Mb/s, we would expect a rate of

5400pkts/s × 106Mb/s

20Mb/s
= 1018pkts/s (6.3)

Both methods of calculating the packet rate agree fairly well. Assuming average

flow length of 10-20 packets (Netflow reports 16), this means 50 to 100 flows/s at 20

Mb/s. This is again is consistent with the 323 flows/s (at 106 Mb/s) that Netflow

suggests. Netflow reports that UDP has twice as many flows/s, thus 100 to 200 per

second.

It seems that short-lived web and UDP flows make up the majority of the flows

we are seeing. The minimum and maximum number of long-lived flows during the 10

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 82

second interval should be:

nmin ≈ ntotal − nUDP − nWeb = 3400 − 2000 − 1000 = 400 (6.4)

nmax ≈ ntotal − nUDP − nWeb = 3400 − 1000 − 500 = 1900 (6.5)

Given the delay-bandwidth product of about 1100 packets, this gives us an average

window size of only 2.5 packets, which is very low. Many of the flows will be throttled

or constrained by the source. However, those that try to send at full speed will likely

see frequent time-outs.

Buffer Size

Using the minimum and maximum number of flows, as well as the delay-bandwidth

product, we can calculate the minimum and maximum buffer:

Bmin

2T × C√
nmax

=
1121pkts√

1900
= 26pkts (6.6)

Bmax

2T × C√
nmin

=
1121pkts√

400
= 56pkts (6.7)

For the experiment, we will assume a minimum buffer size of 56 packets. We can

set the queue length of the class-based shaper in packets. However, the shaper uses

a token bucket mechanism with a minimum size of the bucket of 10 ms. At our rate

of 20 Mb/s, this translates to:

10ms × 20Mb/s = 25kB = 45pkts × 557Bytes (6.8)

The token bucket effectively increases the queue length by 45. Thus, we should

expect (and during the experiment observed) that we still have good link utilization

with a maximum queue length set to zero.

CHAPTER 6. EXPERIMENTAL RESULTS ON PHYSICAL ROUTERS 83

Buffer
Bandwidth [Mb/s]

(measured)
Utilization
(measured)

Utilization
(model)

2T×C√
n

500 19.981 99.92 % 100% >> 2x
40+45 19.709 98.55 % 99.9% 1.5 x
20+45 19.510 97.55 % 99.5% 1.2 x
1+45 19.481 97.41 % 95.9% 0.8 x

Figure 6.9: Utilization data from the router measured during the experiment. The
buffer includes an extra 45 packets due to the minimum size of the toekn buffer that
in this configuration acts like an additional buffer.

Results and Discussion

We measured the utilization using byte counters and timestamps for large buffers as

well as three settings of small buffers. In each case, we measured the rate over several

minutes. The results are shown in Figure 6.9.

The most important result of this experiment that we can achieve very close to full

utilization with buffers that are in the order of 2Tp×C√
n

. The delay-bandwidth product

for our experiment is 557 packets, the buffer available on this router is in the 1000s of

pockets, yet we can achieve 98.5% utilization with only the equivalent of 85 packets.

This is the case not with idealized traffic, but a complex mix of long flows, short flows,

UDP and TCP and a variety of non-congestion aware applications. It also holds in

the worst case of a router experiencing heavy congestion.

Additionally, we can see that our model predicts the approximate amount of buffer-

ing needed. The utilization drop predicted by the model is much steeper than the

drop-off we can observe in the experiment. However, the model predicts the point

where utilization drops from full to below full utilization accurately within a small

factor.

Chapter 7

Conclusion

We believe that the buffers in backbone routers are much larger than they need to

be — possibly by two orders of magnitude. We have demonstrated that theory, ns2

simulation and experimental results agree that much smaller buffers are sufficient for

full utilization and good quality of service.

The results we present in this paper assume only a single point of congestion on

a flow’s path. We don’t believe our results would change much if a percentage of the

flows experienced congestion on multiple links, however we have not investigated this.

A single point of congestion means there is no reverse path congestion, which would

likely have an effect on TCP-buffer interactions [46]. With these assumptions, our

simplified network topology is fairly general. In an arbitrary network, flows may pass

through other routers before and after the bottleneck link. However, as we assume

only a single point of congestion, no packet loss and little traffic shaping will occur

on previous links in the network.

We focus on TCP as it is the main traffic type on the internet today, however

Chapter 4 shows that at least some other traffic types can be modeled with the

same model we use for short flows and that in mixes of flows, long TCP flows will

dominate. As in the internet today, the majority of traffic is TCP. Our results should

cover a fairly broad range of scenarios and the experiment supports this. However,

traffic with a large share of traffic that uses different congestion-aware protocols would

likely require further study.

84

CHAPTER 7. CONCLUSION 85

We did run some simulations using active queue management techniques (e.g.

RED [17]) and this had an effect on flow synchronization for a small number of flows.

Aggregates of a large number (> 500) of flows with varying RTTs are not synchronized

and RED tends to have little or no effect on buffer requirements. However, early drop

can slightly increase the required buffer since it uses buffers less efficiently.

Congestion can also be caused by denial of service (DOS) [22] attacks that attempt

to flood hosts or routers with large amounts of network traffic. Understanding how to

make routers robust against DOS attacks is beyond the scope of this thesis, however,

we did not find any direct benefit of larger buffers for resistance to DOS attacks.

If our results are right, they have consequences for the design of backbone routers.

While we have evidence that buffers can be made smaller, we haven’t tested the

hypothesis in a real operational network. It is a little difficult to persuade the operator

of a functioning, profitable network to take the risk and remove 99% of their buffers.

That has to be the next step, and we see the results presented in this thesis as a first

step toward persuading an operator to try it.

If an operator verifies our results, or at least demonstrates that much smaller

buffers work fine, it still remains to persuade the manufacturers of routers to build

routers with fewer buffers. In the short-term, this is difficult too. In a competitive

market-place, it is not obvious that a router vendor would feel comfortable building

a router with 1% of the buffers of its competitors. For historical reasons, the network

operator is likely to buy the router with larger buffers, even if they are unnecessary.

Eventually, if routers continue to be built using the current rule-of-thumb, it will

become very difficult to build line cards from commercial memory chips. And so, in

the end, necessity may force buffers to be smaller. At least, if our results are true,

we know the routers will continue to work just fine, and the network utilization is

unlikely to be affected.

Appendix A

A.1 Summary of TCP Behavior

Let’s briefly review the basic TCP rules necessary to understand this paper. We will

present a very simplified description of TCP Reno. For a more detailed and more

comprehensive presentation, please refer to e.g. [42].

The sending behavior of the TCP sender is determined by its state (either slow-

start or congestion avoidance) and the congestion window, W . Initially, the sender

is in slow-start and W is set to two. Packets are sent until there are W packets

outstanding. Upon receiving a packet, the receiver sends back an acknowledgement

(ACK). The sender is not allowed to have more than W outstanding packets for which

it has not yet received ACKs.

While in slow-start, the sender increases W for each acknowledgement it receives.

As packets take one RTT to travel to the receiver and back this means W effectively

doubles every RTT. If the sender detects a lost packet, it halves its window and enters

congestion avoidance. In congestion avoidance, it only increases W by 1/W for each

acknowledgment it receives. This effectively increases W by one every RTT. Future

losses always halve the window but the flow stays in CA mode.

Slow-Start:
No loss: Wnew = 2Wold

Loss: Wnew = Wold

2
, enter CA

CA:
No loss: Wnew = Wold + 1

Loss: Wnew = Wold

2

86

APPENDIX A. 87

In both states, if several packets are not acknowledged in time, the sender can also

trigger a timeout. It then goes back to the slow-start mode and the initial window

size. Note that while in congestion avoidance, the window size typically exhibits

a sawtooth pattern. The window size increases linearly until the first loss. It then

sharply halves the window size, and pauses to receive more ACKs (because the window

size has halved, the number of allowed outstanding packets is halved, and so the sender

must wait for them to be acknowledged before continuing). The sender then starts

increasing the window size again.

A.2 Behavior of a Single Long TCP Flow

Note: The following appendix is primarily the work of Isaac Keslassy, and not of the

author of this thesis. It is reproduced here for completeness of argument.

Consider a single long TCP flow, going through a single router of buffer size equal

to the delay-bandwidth product (Figure 2.1). It is often assumed that the round-trip

time of such a flow is nearly constant. Using this assumption, since the window size

is incremented at each round-trip time when there is no loss, the increase in window

size should be linear with time. In other words, the sawtooth pattern of the window

size should be triangular.

However, the round-trip time is not constant, and therefore the sawtooth pattern

is not exactly linear, as seen in Figure 2.2. This becomes especially noticeable as link

capacities, and therefore delay-bandwidth products, become larger and larger. Note

that if the sawtooth was linear and the round-trip time was constant, the queue size

increase would be parabolic by integration. On the contrary, we will see below that

it is concave and therefore sub-linear.

Let’s introduce a fluid model for this non-linear sawtooth behavior. Let Q(t)

denote the packet queue size at time t, with Q(0) = 0. As defined before, 2Tp is

the round-trip propagation time, and C is the router output link capacity. For this

fluid model, assume that the propagation time is negligible compared to the time it

takes to fill up the buffer. Then, in the regularly increasing part of the sawtooth, the

APPENDIX A. 88

window size increases by 1 packet every RTT (Appendix A.1), and therefore

Ẇ (t) =
1

RTT
=

1

2Tp + Q(t)/C
.

In addition the window size is linked to the queue size by

W (t) = 2TpC + Q(t).

Joining both equations yields

Ẇ (t) =
C

W (t)
. (A.1)

Hence
d
(

W 2(t)
2

)

dt
= C

W 2(t) = 2Ct + W (0).

When the sawtooth pattern starts, Q(0) = 0, thus

W (0) = 2TpC + Q(0) = 2TpC.

We finally get a simple model for the increase of the window size in the sawtooth,

W (t) =
√

2Ct + (2TpC)2. (A.2)

Therefore, as t � Tp, the queue size behaves in a square-root fashion, instead of a

linear one, as commonly believed. The queue size behaves in a similar fashion,

Q(t) = W (t) − 2TpC =
√

2Ct + (2TpC)2 − 2TpC. (A.3)

As an application, it is now possible to determine the periodicity T of the sawtooth

pattern. The maximum buffer size B is reached when Q(T) = B, i.e.

T =
B2

2C
+ 2TpB.

APPENDIX A. 89

When the buffer size is equal to the bandwidth-delay product (B = 2TpC), we get

T = 1.5
B2

C
.

For instance, in Figure 2.2, the modelled sawtooth period is T = 1.51422

1000
= 30.2,

which fits the observed value.

A.3 Queue Distribution using

Effective Bandwidth

The goal of this appendix is to model the behavior of the router queue when there

are several senders with short TCP flows. As explained in Section 4.1, each of these

short TCP flows sends a given number of bursts. We assume that all these bursts

are independent, and by considering all the independent bursts of all the flows, we

model the arrival process to the router as the cumulative arrival of these independent

bursts. Let A(t) denote the cumulative amount of traffic arrived to the router at time

t, N(t) the number of bursts arrived before t, and Xi the size of each of these bursts.

Then:

A(t) =
N(t)
∑

i=1

Xi.

We assume that the bursts arrive as a Poisson process N(t) of rate ν, and that their

burst size follows a distribution function F . The queue is serviced with a capacity C.

Therefore, we use an M/G/1 model for the job size in the router queue. Of course,

the traffic arrival rate λ is the product of the burst arrival rate by the average burst

size:

λ = νE[X].

The effective bandwidth theory describes the characteristics of a traffic source, and

in many cases can be a powerful tool to derive properties that are otherwise hard to

compute. For more information we refer the reader to [27], from which most of the

results below are adapted. Consider a cumulative traffic arrival function A(t), where

APPENDIX A. 90

A(t) has stationary increments. Its effective bandwidth is defined as:

α(s, t) =
1

st
logE

[

esA(t)
]

.

In our case, A(t) has i.i.d. increments. It is a special case of Lévy process, and its

effective bandwidth has a simpler form (section 2.4 of [27]):

α(s) =
1

s

∫

(esx − 1)νdF (x) =
λ

sE[X]
E
[

esX − 1
]

. (A.4)

We can now use Cramér’s estimate to model the tail of the distribution of the queue

length Q (section 3.2 of [27]). This estimate assumes an infinite buffer size. For

Cramér’s estimate there has to exist a constant κ such that the effective bandwidth

is the link capacity:

α(κ) = C (A.5)

Also the derivative α′(s) has to exist at κ. Both are satisfied in our case as λ < C

and α(s) is differentiable for any s > 0. Cramer’s estimate is given by

P (Q ≥ b) ≈ C − α(0)

κα′(κ)
e−κb (A.6)

To calculate κ we need to simplify Equation (A.5). We approximate the exponential

function by its Taylor Series.

esX = 1 + sX +
s2

2
X2 +

s3

6
X3 + O(X4) (A.7)

We present solutions for the 2nd and 3rd order approximation. In our experience the

2nd order approximation is sufficient to estimate the required buffer.

Second Order Approximation We substitute Equation (A.7) into Equation (A.4)

and obtain for the 2nd order approximation:

α(s) =
λ

sE[X]
E

[

1 + sX +
s2

2
X2 − 1

]

APPENDIX A. 91

= λ +
λs

2

E[X2]

E[X]

α′(s) =
λ

2

E[X2]

E[X]

The load ρ is defined as the ratio of the arrival rate λ by the capacity C:

ρ =
λ

C
.

Using Equation (A.5), we get:

κ =
2(1 − ρ)

ρ

E[X]

E[X2]

Finally, for the queue size distribution we obtain

P (Q ≥ b) ≈
λ
ρ
− λ

2(1−ρ)
ρ

E[X]
E[X2]

λ
2

E[X2]
E[X]

e−bκ = e−bκ

Third Order Approximation. We substitute Equation (A.7) into Equation (A.4)

and obtain for the 3rd order approximation:

α(s) =
λ

sE[X]
E

[

1 + sX +
s2

2
X2 +

s3

6
X3 − 1

]

= λ +
λs

2

E[X2]

E[X]
+

λs2

6

E[X3]

E[X]

α′(s) =
λ

2

E[X2]

E[X]
+

λs

3

E[X3]

E[X]

Again we now need to solve α(κ) = C where ρ = λ
C
. We obtain the quadratic

equation.

κ2 + κ
3E[X2]

E[X3]
− 6(1 − ρ)

ρ

E[X]

E[X3]
= 0

APPENDIX A. 92

and for κ

κ = −3

2

E[X2]

E[X3]
+

√

√

√

√

(

3

2

E[X2]

E[X3]

)2

+
6(1 − ρ)

ρ

E[X]

E[X3]

For the queue size distribution we find.

P (Q ≥ b) ≈
λ
ρ
− λ

λκ
2

E[X2]
E[X]

+ λκ2

3
E[X3]
E[X]

e−bκ

=
1 − ρ

ρ

E[X]
κ
2
E[X2] + κ2

3
E[X3]

e−bκ

A.4 Configuration of ns2

Instead of trying to describe every experimental setting of ns2 in the main text, we in-

clude below the beginning of the experimental script used in most of the experiments.

Complete scripts are available on the authors web page.

#

TcpSim

(c) Guido Appenzeller, 2003

#

Defaults - May change for each experiment

set load 0.8 ;# 80% load

set bw 19.375 ;# OC3 speed, 155 Mb/s

set flows_data_kb 30 ;# 30 packets per flow

set bneck_buffer 1650 ;# Buffer of RTT*BW

set log 0

set long_n 0 ;# no of long (size infinity) flows

set time_length 50 ;# Duration

set bi 0 ;# One-way or two way traffic

set pareto 0 ;# Default is fixed size

--- Flow Parameters

Average amount of flow data in MBytes/s

set flows_bw_mb [expr $load*$bw] ;

flows - Average number of flows per second

set flows_n [expr $flows_bw_mb*1000.0/$flows_data_kb*1.0];

Average Inter Arrival Time

set flows_aiat [expr 1/$flows_n];

APPENDIX A. 93

--- Bottleneck Link Parameters

set bneck_bw_mb $bw ;# MBytes / second

set bneck_lat 20 ;# miliseconds

set bneck_drop "DropTail"

set bneck_bw_n [expr $bneck_bw_mb*8.0*1000]

set bneck_bw ${bneck_bw_n}kb

--- Access Link Parameters

set access_bw_n [expr $bneck_bw_n*100]

set access_bw ${access_bw_n}kb

set access_lat_min 20

set access_lat_max 30

--- Packet parameters

set max_receiver_window 10000 ;# Maximum advertised receiver Window

set packet_len 960 ;# Length of packets

--- Logging data

set time_slice 0.05 ;# Length of a time slice for logging

set time_startphase [expr $time_length/3] ;# Length of the startphase (util is not counted)

------ Distribution of Arrivals (Poission) ---------------------

set rng [new RNG]

$rng seed 0

set arrival_t [new RandomVariable/Exponential]

$arrival_t use-rng $rng

------ For pareto Flows (Poission) ----------------------------

set rng2 [new RNG]

$rng2 seed 0

Important, what shape!

set pareto_shape 1.2

This will be flow size

set npkts [new RandomVariable/Pareto]

$npkts use-rng $rng2

$npkts set avg_ $flows_data_kb

$npkts set shape_ $pareto_shape

remove-all-packet-headers ;# removes all except common

APPENDIX A. 94

add-packet-header Pushback NV

add-packet-header IP TCP Flags ;# hdrs reqd for cbr traffic

Nix routing rocks - this reduces memory by over a factor of two

$ns set-nix-routing

--- Create Server, Router and bottleneck link ------------------

set n_server [$ns node]

set n_router [$ns node]

$ns duplex-link $n_server $n_router $bneck_bw ${bneck_lat}ms $bneck_drop

$ns queue-limit $n_router $n_server $bneck_buffer

for {set i 0} {$i < [expr $flows_nn]} {incr i} {

set n_client($i) [$ns node]

set lat_access [expr int(rand()*($access_lat_max-$access_lat_min))+$access_lat_min]

set av_lat [expr $av_lat + $lat_access]

$ns duplex-link $n_router $n_client($i) $access_bw ${lat_access}ms $bneck_drop

$ns queue-limit $n_client($i) $n_router 32000

}

A.5 Cisco IOS Configuration Snippets for the VXR

This configuration snippet can be used to limit the sending rate of a shared memory

router. Note that the token bucket size specified (here 10,000) for real line rates is

far above the size of a single packet and that this incurs additional buffering that has

to be accounted for.

! IOS snippet to shape traffic to 1 Mb/s with 64 packet queue

!

! Note: ** max-buffer does not show up in running-config

! if you save/copy it to a drive or via tftp

!

! Define a packet class that matches any packet

class-map match-all guido-c1

APPENDIX A. 95

match any

! Define a policy map that shapes this class to 1 Mb/s

! token bucket size is 10,000 Bits = 1.2 kByte

! queue length is 64 packets

policy-map guido-map1

class guido-c1

shape average 1000000 10000 0

shape max-buffers 64

! Activate policy for the interface

interface FastEthernet4/0

service-policy output guido-map1

Bibliography

[1] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[2] Personal communication with stanford networking on characteristics of current

stanford nework traffic.

[3] Guy Almes. [e2e] mailing list. Posting to the end-to-end mailing list, April, 2004.

[4] Youngmi Joo Anna Gilbert and Nick McKeown. Congestion control and periodic

behavior. In LANMAN Workshop, March 2001.

[5] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router buffers.

Technical Report TR04-HPNG-06-08-00, Stanford University, June 2004. Ex-

tended version of the paper published at SIGCOMM 2004.

[6] K.E. Avrachenkov, U. Ayesta, E. Altman, P. Nain, and C. Barakat. The effect

of router buffer size on the TCP performance. In Proceedings of the LONIIS

Workshop on Telecommunication Networks and Teletraffic Theory, pages 116–

121, St.Petersburg, Russia, Januar 2002.

[7] Vijay Bollapragada, Curtis Murphy, and Russ White. Inside Cisco IOS Software

Architecture. Cisco Press, 2000.

[8] L. Brakmo, S. O’Malley, and L. Peterson. Tcp vegas: New techniques for conges-

tion detection and avoidance. In Proceedings of ACM SIGCOMM, pages 24–35,

August 1994.

[9] R. Bush and D. Meyer. RFC 3439: Some internet architectural guidelines and

philosophy, December 2003.

96

BIBLIOGRAPHY 97

[10] J. Cao, W. Cleveland, D. Lin, and D. Sun. Internet traffic tends to poisson and

independent as the load increases. Technical report, Bell Labs, 2001.

[11] Inc. Cisco Systems. Netflow services solution guido, July 2001. http://www.

cisco.com/.

[12] Constantine Dovrolis. [e2e] Queue size of routers. Posting to the end-to-end

mailing list, January 17, 2003.

[13] Bohacek et al. A hybrid system framework for tcp congestion control. Technical

report, University of California at Santa Cruz, 6 2002.

[14] Anja Feldmann, Anna C. Gilbert, and Walter Willinger. Data networks as cas-

cades: Investigating the multifractal nature of internet WAN traffic. In SIG-

COMM, pages 42–55, 1998.

[15] Dennis Ferguson. [e2e] Queue size of routers. Posting to the end-to-end mailing

list, January 21, 2003.

[16] S. Floyd. RFC 3649: Highspeed TCP for large congestion windows, December

2003.

[17] Sally Floyd and Van Jacobson. Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[18] Chuck J. Fraleigh. Provisioning Internet Backbone Networks to Support Latency

Sensitive Applications. PhD thesis, Stanford University, Department of Electrical

Engineering, June 2002.

[19] S. Ben Fredj, T. Bonald, A. Proutière, G. Régnié, and J.W. Roberts. Statis-

tical bandwidth sharing: a study of congestion at flow level. In Proceedings of

SIGCOMM 2001, San Diego, USA, August 2001.

[20] Michele Garetto and Don Towsley. Modeling, simulation and measurements of

queueing delay under long-tail internet traffic. In Proceedings of SIGMETRICS

2003, San Diego, USA, June 2003.

BIBLIOGRAPHY 98

[21] John Hennessy and David Patterson. Computer Architecture. Morgan Kaufmann

Publishers Inc., 1996.

[22] Alefiya Hussain, John Heidemann, and Christos Papadopoulos. A framework for

classifying denial of service attacks. In Proceedings of ACM SIGCOMM, August

2003.

[23] Gianluca Iannaccone, Martin May, and Christophe Diot. Aggregate traffic perfor-

mance with active queue management and drop from tail. SIGCOMM Comput.

Commun. Rev., 31(3):4–13, 2001.

[24] Sundar Iyer, R. R. Kompella, and Nick McKeown. Analysis of a memory ar-

chitecture for fast packet buffers. In Proceedings of IEEE High Performance

Switching and Routing, Dallas, Texas, May 2001.

[25] Van Jacobson. [e2e] re: Latest TCP measurements thoughts. Posting to the

end-to-end mailing list, March 7, 1988.

[26] C. Jin, D. X. Wei, and S. H. Low. Fast tcp: motivation, architecture, algorithms,

performance. In Proceedings of IEEE Infocom, March 2004.

[27] F. P. Kelly. Notes on Effective Bandwidth, pages 141–168. Oxford University

Press, 1996.

[28] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle. Dynamics of

TCP/RED and a scalable control. In Proceedings of IEEE INFOCOM 2002,

New York, USA, June 2002.

[29] Microsoft. TCP/IP and NBT configuration parameters for windows xp. Microsoft

Knowledge Base Article - 314053, November 4, 2003.

[30] R. Morris. TCP behavior with many flows. In Proceedings of the IEEE Interna-

tional Conference on Network Protocols, Atlanta, Georgia, October 1997.

[31] Robert Morris. Scalable TCP congestion control. In Proceedings of IEEE INFO-

COM 2000, Tel Aviv, USA, March 2000.

BIBLIOGRAPHY 99

[32] Vern Paxson and Sally Floyd. Wide area traffic: the failure of Poisson modeling.

IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[33] Lili Qiu, Yin Zhang, and Srinivasan Keshav. Understanding the performance of

many TCP flows. Comput. Networks, 37(3-4):277–306, 2001.

[34] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network proto-

cols. ACM Computer Communication Review, 27(1):31–41, 1997.

[35] S. Shenker, L. Zhang, and D. Clark. Some observations on the dynamics of a

congestion control algorithm. ACM Computer Communications Review, pages

30–39, Oct 1990.

[36] Cisco Support Web Site. Cisco 12000 series routers. http://www.cisco.com/

en/US/products/hw/routers/ps167/.

[37] Cisco Support Web Site. Cisco ios quality of service solutions configura-

tion guide. http://www.cisco.com/univercd/cc/td/doc/product/software/

ios122/122cgcr/fqos_c/fqcprt4/index.htm.

[38] Cisco Support Web Site. Cisco line cards. http://www.cisco.com/en/US/

products/hw/modules/ps2710/products_data_sheets_list.html.

[39] Cisco Support Web Site. Configuring class-based shaping - cisco ios quality of ser-

vice solutions configuration guide. http://www.cisco.com/univercd/cc/td/

doc/product/software/ios122/122cgcr/fqos_c/fqcprt4/qcfcbshp.htm.

[40] Cisco Support Web Site. Configuring generic traffic shaping - cisco ios soft-

ware. http://www.cisco.com/en/US/products/sw/iosswrel/ps1828/prod_

configuration_guides_list.html.

[41] Joel Sommers and Paul Barford. Self-configuring network traffic generation.

In Proceedings of the ACM SIGCOMM Internet Measurement Conference,

Taormina, Italy, October 2004.

BIBLIOGRAPHY 100

[42] W. Richard Stevens. TCP Illustrated, Volume 1 - The Protocols. Addison Wesley,

1994.

[43] Curtis Villamizar and Cheng Song. High performance TCP in ANSNET. ACM

Computer Communications Review, 24(5):45–60, 1994 1994.

[44] Ronald W. Wolff. Stochastic Modelling and the Theory of Queues, chapter 8.

Prentice Hall, October 1989.

[45] Lixia Zhang and David D. Clark. Oscillating behaviour of network traffic: A case

study simulation. Internetworking: Research and Experience, 1:101–112, 1990.

[46] Lixia Zhang, Scott Shenker, and David D. Clark. Observations on the dynamics

of a congestion control algorithm: The effects of two-way traffic. In Proceedings

of ACM SIGCOMM, pages 133–147, September 1991.

