42 lines
1.3 KiB
Python
42 lines
1.3 KiB
Python
|
import sys
|
||
|
sys.path.append('../group-1')
|
||
|
import pandas as pd
|
||
|
from scraper.top100_extractor import programming_crime_list
|
||
|
|
||
|
def stock_price_time_series(ticker: str):
|
||
|
# Read market price csv
|
||
|
market_prices = pd.read_csv(f'Companies_Data/{ticker}_Data/{ticker}_price_history.csv')
|
||
|
|
||
|
return market_prices
|
||
|
|
||
|
def eps_bar_chart(ticker: str):
|
||
|
# Read earnings csv
|
||
|
earnings = pd.read_csv(f'Companies_Data/{ticker}_Data/{ticker}earnings.csv')
|
||
|
|
||
|
earnings = earnings[['symbol', 'epsActual', 'quarter']]
|
||
|
|
||
|
return earnings
|
||
|
|
||
|
def concatenate_price_history():
|
||
|
# Declare empty dataframe
|
||
|
unified_price_history = pd.DataFrame()
|
||
|
|
||
|
for ticker in programming_crime_list:
|
||
|
prices = stock_price_time_series(ticker)
|
||
|
unified_price_history = pd.concat([prices, unified_price_history], ignore_index=True, axis=0)
|
||
|
|
||
|
unified_price_history.to_csv('Elaborated_Data/price_history_data.csv')
|
||
|
|
||
|
def concatenate_eps():
|
||
|
# Declare empty dataframe
|
||
|
eps_df = pd.DataFrame()
|
||
|
|
||
|
for ticker in programming_crime_list:
|
||
|
eps = eps_bar_chart(ticker)
|
||
|
eps_df = pd.concat([eps, eps_df], ignore_index=True, axis=0)
|
||
|
|
||
|
eps_df.to_csv('Elaborated_Data/eps_quarterly_bar_chart.csv')
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
concatenate_price_history()
|
||
|
concatenate_eps()
|