import os import pandas as pd import numpy as np from scraper.top100_extractor import programming_crime_list from typing import Optional DF_EPS_PATH: str = os.path.join(os.path.dirname(__file__), '..', '..', 'Elaborated_Data', 'eps_comparison.csv') def get_eps_comp(tickers: list[str]) -> list[dict]: df = pd.read_csv(DF_EPS_PATH) ticker_series = pd.Series(tickers) df = df.loc[df['Ticker'].isin(ticker_series), :] \ .rename(columns={"epsDifferential": "quarterlyDifferential", "Ticker": "ticker"}) \ .reset_index(drop=True) df = df.pivot(index='quarter', columns='ticker', values='quarterlyDifferential').reset_index(drop=False) return df.replace({ np.nan: None }).to_dict('records')