{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "

Claudio, questo notebook genera la chart relativa alla salute finanziaria. Essenzialmente ci sono quattro colonne che sono stackate a coppie di due: Total Assets/Current Assets e Total Debt/Current Debt. Sostanzialmente asset e debiti a breve termine e lungo termine (quelli a lungo termine saranno sempre superiori in quanto incorporano quelli a breve termine in entrambi i casi). Come vedi il colore degli asset e debiti a breve è molto più marcato perché questi sono nettamente più rilevanti. Se hai qualche idea su come mostrarlo diversamente sono bene accette, io penso che questa soluzione faccia il suo, penso che le stacked bar siano molto efficaci in questo contesto. \n", "

\n", "\n", "

*Nota: ho scelto proprio APPL e MSFT per mostrare che secondo me anche questo garfico ha bisogno di una versione \"relativa\". Quello che vedi sotto compara i valori assoluti, però anche averne uno in cui le altezze delle colonne sono determinate rispetto alle dimensioni dell'azienda non sarebbe male. Domani vediamo comunque.

" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACVAAAASgCAYAAAAUgfEiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACn30lEQVR4nOzdedyWc94//tfVpi60KUUlFHFTyRq6ddu3MT+MMYRBxp5BMRiikWVmzGDEMLbbvmtEtgkzmSHCNJgyWabsUqm0r9fvj76dd9dUiOqsjufz8Tgfj+s8js/nPN7HefXH9Xj3Oj6fiqqqqqoAAAAAAAAAAAAUUI1yFwAAAAAAAAAAAFAuAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFi1yl0AALD6OeywwzJs2LAkyeGHH54+ffos03nnnntu/vjHP1Y7VqNGjdSuXTuNGjVK586d06NHj7Rq1WqxcwYPHpzmzZsv5V0tvXbt2i32eO3atdOwYcO0b98+PXr0yBZbbPGtPv+jjz7K7rvvniQ55JBDcumll37rWldW48ePz80335znn38+n3zySWbPnp2mTZtm6623ztFHH50OHTpUG7/gO99xxx1z2223laHi/zN16tRMmDAhLVu2LGsdAAAAsDL7zz5Ply5dcsstt1Qbc+2116Zfv36l9y1atMhzzz1XbcygQYPy4IMP5p///GcmTZqUunXrZuONN87ee++do446KmussUZpbL9+/XLttdd+bW2vvPJKLrvsskX6UEty+eWX5+CDD/5GY7/O4vpfSVKrVq3Uq1cvG2ywQX7wgx+kW7duqaio+FbXOOqoozJ06NDUrFkzI0aM+K4lr3TmzZuX/v37Z8CAAXnnnXcyefLkrLnmmtlkk03y/e9/P4ccckhq1qxZGl+O/uFXefvtt7PpppuWtQYAKBIrUAEAy9R7771XCkElyWOPPZZp06Ytt3kLzJs3LzNnzsxnn32WRx55JN26dcunn366dMWvILNnz87YsWPz3HPP5fDDD88bb7xR7pJWSu+//34OOOCA3HrrrXn33Xczbdq0zJ49O5988kkGDhyYH/3oRxk4cGC5y1zEnDlzcu+992avvfbK0KFDy10OAAAArFJeffXVzJo1q9qxl1566SvnXHbZZenRo0cGDx6c8ePHZ86cOZkyZUreeOONXHHFFenWrdtS9ZlWZnPmzMnkyZMzfPjwXHzxxfnlL39Z7pJWSvPmzcsZZ5yR888/P0OHDs2ECRMyZ86cTJo0Ka+++mouvPDCnHLKKZk3b165S13EG2+8kaOOOip9+/YtdykAUCgCVADAMvXQQw9Vez9lypQ88cQTy3Xe4MGD8+yzz+aee+7JtttumyT5/PPP8/vf/34pKl9+ttlmmwwePDiDBw/On//85zz55JM544wzkiQzZ87Mb3/72/IWuJL65S9/mfHjx6dWrVo5++yz8+ijj+aJJ55I7969U7t27cybNy8XXXTRStcAfeKJJ9KnT5+MGzeu3KUAAADAKmfGjBl57bXXSu+nT5+ef/zjH0scP2LEiNx+++1Jkk6dOuXWW2/NoEGDcvfdd2f77bdPkvzzn/9c4krV1157balv85+vtddeO+edd161Y8ccc8wS5+67777f+f4XZ0H/6y9/+UueeeaZ3HTTTWnWrFmS5I477shHH320XK67Knv22Wfz9NNPJ0l23XXX3H333Rk0aFBuueWW0qpOf/nLX/LYY4+Vs8zFOvzwwz2UBwBlIEAFACwzs2fPzoABA5IkLVu2LC2B/cADDyyXeUnStGnTNG/ePC1btsw222yTq6++ujT/hRde+Nb3sizVqVMnzZs3T/PmzbP++utn4403zsknn5w2bdokSd58880yV7hyevnll5Mkm2++eX7yk5+kXbt2adOmTY488sj88Ic/TDI/aLeyfX9VVVXlLgEAAABWSS1atEiSDBkypHTs1VdfzezZs5PM7xv9pwX9gyQ5+eSTs/POO2eDDTbItttum6uuuio1atRY5DMX1qhRo1Lf5j9fFRUVadCgQbVja6211hLn1qtX77t/CYuxoP+13nrrpVWrVtlll11y1FFHJZm/0tLquP3ed7Xwv4uzzjor2267bTbYYIN06dIll156aenckv5dlJPeEgCUhwAVALDM/PnPf8748eOTJIceemh23HHHJMnrr7+ef/3rX8t83uI0bdo0jRo1SpKMHTt2qe9hRVrQwGvcuHG14zNnzsy1116b/fffP1tvvXU6dOiQ3XbbLRdccEHGjBnzjT77L3/5S44++ujstNNO2XLLLbPDDjvk2GOPzeDBg6uNO+qoo9KuXbscfPDBGTNmTM4+++zssMMO6dixY44++ujFhpPeeOON9OjRIzvuuGPat2+fPfbYI3369Fmktnnz5uWOO+7IAQcckPbt22eHHXbISSed9I0DT3Xq1Eky/ynRq666Kp999lnp3LnnnpshQ4ZkyJAh6dSp02LnjxgxIscee2y22mqrdO7cOeeff34mTJjwrWtc8HvZe++9s+WWW2annXZKr169MmrUqNKYfv365Wc/+1np/XnnnZd27dpVa9oBAAAAi7fDDjskqf5Q3IKAS8uWLbP++usvMmdB/yBJfvOb3+T555/PnDlzkiRNmjQp9Q+uu+665Vn6Cregr5Qs2lv6pn2hJfnkk0/Su3fv7LbbbunQoUO23nrrfO9738u1116bmTNnlsb1798/7dq1S7t27fKvf/0rt912W6lvsvfeey921a8vv/wyV1xxRfbee++0b98+O+20U4499tj87W9/W2Ts66+/nhNOOCHbbrttOnTokAMPPDB33333N9p2r3bt2qWf+/Tpk1dffbUUTOrQoUPp38UFF1yw2PlTp07N5Zdfnp133jkdO3Zc4qpQS1Pj888/n6OOOiqdOnVKp06dcthhh2XgwIGl8x999FHatWuXuXPnJkmGDh2adu3a5dxzz/3a+wUAvrta5S4AAFh9LLwN33777ZfmzZuXmh8PPPBALrzwwmU6b3HGjBlTCsmss846S30Py1tVVVWmTJmS/v3755133kmSHHLIIdXG9OrVK4MGDap27OOPP86DDz6YV155JU888URpla3FeeaZZ3LaaadVa9RMnDgxL774YoYMGZI777wz2223XbU5EydOzI9+9KN8+umnpWMvvfRSunfvnueeey5rr712kmTQoEE588wzS09+JsmHH36Ye++9N88//3zuvffe0hLyZ511Vh5//PHSuFmzZuXPf/5z/va3v+X3v/99dtlll6/8rr73ve/lzjvvTFVVVW644YbccMMN2WSTTdK5c+fsuuuu2XHHHas1Cxc2evTodOvWLdOnT08yf7n/hx56KGPHjs2NN95YGvdNa5w1a1a6d++eV199tTR2/PjxGThwYAYPHpw77rgj//Vf//WV9wMAAAB8te233z79+/fPiBEjMmnSpDRo0CAvvfRS6dzitqrbY489csUVV2T69Ol5++23c/zxx2ettdbKdtttl5122il77713qVexOpg1a1ZGjBiRu+66K0my8cYbZ+utty6d/zZ9oYVNnjw5Rx11VLXveubMmXnnnXfyzjvv5JNPPslll122yLy+fftW65uMHj06l19+eRo2bJgDDzwwSTJhwoQcdthhGT16dGnc+PHjS7X96le/yv/3//1/SeZvwXf66adX60G99dZbufjii/P666/n17/+9Vd+T/vvv3/+93//N1VVVXnllVdyxBFHpFGjRtl+++3z3//939lzzz3TsGHDJc4/9dRTqz009/e//z3HHXdcBg0alObNmy91jffcc08uvvjiaqtLDRs2LMOGDct7772X008//SvvBwBY/qxABQAsE2PGjCmFnjp16pRWrVplzz33TGVlZZLk0UcfLYVZlsW8BcaOHZvPPvssH374YV588cWceuqppae0dtttt2V6j9/WkCFDSk/jbbbZZtl2221LjabDDjssxx9/fGns6NGj8/zzzyeZvxrXU089lQEDBqRLly6l8//+97+/8np33XVX5s2bl9atW+e+++7LoEGDcv755yeZH+B67rnnFpnz8ccfp2HDhrn77rvz4IMPpl27dknmPxX4zDPPJJn/5N0FF1yQ2bNnp0GDBrnyyivz1FNPlVZc+vjjj3P99dcnSZ588slSMOnggw/OY489lvvvvz+dOnXK7Nmz8/Of/zyzZs36yvvo1atXdtppp2rH3nnnndx5553p3r179t133/zjH/9Y7NxPP/00e+21Vx577LHceOONpYbY4MGDSytlLU2Nd9xxR6kJeMIJJ+SJJ57Ibbfdlo033jiTJ08uPa147LHHVnty8bzzzsvgwYOXuEoWAAAA8H8WrEA1b968vPTSS5k4cWLeeuutauf+U7NmzfKb3/ym2vZ5U6ZMyZ///Odceuml2W233XLppZdWC7ks7Igjjij1bRZ+LS6sVS5du3Yt1dW+ffv86Ec/yieffJK2bdvm+uuvr/aA2bfpCy3smWeeKT1g16dPnzzzzDO5++67S6t/LWn+G2+8kb59++aJJ57IscceWzr+8MMPl36+6qqrSuGpo446KgMHDsxtt92W9ddfP1VVVbnssssyffr0TJ8+vdSD2nDDDXPrrbfmySefzCmnnJIkGTBgwNfex5ZbbpnevXunVq3/W0tiwoQJefrpp3PBBReka9eupT7W4syZMye33nprBgwYkF133TXJ/PDagAEDkmSpahwzZkwuu+yyVFVVpUOHDrnnnnvy+OOP54c//GGS5Prrr8+//vWvrLfeehk8eHDpwcmtttoqgwcPznnnnfeV9woALBsCVEvw+9//vrR/9LKeP2rUqGy11VYr1R/fAPBdPfzww6Xg0ve+970kSWVlZXbfffck859ee/LJJ5fZvAUOOeSQdO3aNXvssUeOPfbY0tZrrVq1So8ePZbR3SVz587NZ599tshrQe3f1t/+9rdqS5RvuOGGGTZsWJ588slccMEF2WijjdK4ceO0bt26NGbSpElf+Zm33XZbXnzxxdx5553p1KlTmjVrljZt2nzt/EsuuaS03PhJJ51UOr5gK8QXX3wxEydOTJL85Cc/yf7775+NNtooxx13XM4777xcccUVpb9/Fiw/vsYaa6RHjx6pX79+mjdvnhNPPLH0mQsvx7849erVy6233prrrrsuu+22WylUt8Do0aNz3HHH5cMPP1xkbsOGDXPppZdm0003TdeuXXPAAQeUzi0IUC1NjQvGtmjRIkcccUTWXHPNbLTRRqX7HT58eN5+++2stdZaqV+/fulaCz5z4e0EAAAAgMVbf/3107JlyyTzt/F7+eWXSyspLSlAlcxfherpp5/OSSedlI033rjauTlz5uSOO+7IL3/5y+VX+DfwxRdfLNJXmjJlynf6zAWrgi/YsjD59n2hBQ466KAMGzYsTzzxRA4//PC0atUqjRo1Kq26tKT5hx56aA499NC0adMmP/vZz0qBtnHjxiWZH4pb0ONr06ZNzj///GyyySbZcccdc9lll6V3797p169fatasmRdeeCFffPFFkuTII49MmzZtUllZmR/96EelHtkjjzzytd/PEUcckcceeyxHHXVUWrRoUe3cjBkzcvXVV+fWW29d7Nyzzz47O++8czbbbLOcdtpppeOfffZZkixVjU899VQpwHfiiSemRYsWWWuttXLKKaekXr16qaqqyoABA1KzZs3S95zM356yefPmadCgwdfeKwDw3dnCbzFuu+22XHPNNV+5hOm3nT9y5MiceOKJX7mSBgCsaqqqqtK/f//S+zXXXLO0itLCzYkHHnggBx988Heetzg1a9ZM3bp106xZs3Tp0iUnn3xyGjdu/N1ubCGffvppKdS1sGeffbbU2FuSbbbZJldeeWWS+c2i6dOn55133smvfvWrfPTRRznllFMyYMCAtG3bNsn8J9iGDBmSF198MW+++WYp8LPANwltvfXWW/nTn/6UYcOGZdSoUdWeslx4CfeFbbrppqWfGzVqVPp5QRNu4eXVN99882pzjznmmGrvF4ydOXPmElcCGz58eOkJviWpqKjIHnvskT322COzZ8/O66+/nr/+9a958MEHM378+EyZMiX33Xdfzj777GrzNtpoo9SuXbv0fsEWhElK38XS1Lhg7Mcff5yuXbsucezC3yEAAACw9BZs1TdkyJDSykqtWrXKeuut95XzmjVrljPPPDNnnnlmxowZkxdffDGPP/54/vrXvyZJ7r///px++unVHnxKkmuvvTbt27df5POaNm26jO5ovtNPPz1Dhw6tdqxHjx7VwjlL8tBDD5XqmTVrVsaOHZvbb789Tz/9dG677basscYa6dmzZ2n8t+kLLWzs2LF58sknM3To0Lz11lv58ssvv3b+wj2RGjVqpEGDBpk+fXqprzRhwoTS52y22WapqKgojd9xxx2z4447lt4v3IO65JJLcskllyxyvX/+859fex/J/C0OL7jgglxwwQV5//338+KLL2bAgAEZNmxYkuTmm29O9+7dF5m3YHX2JNX+zfxnX+mb1Ljw2FNPPXWxdX7T+wEAlh8BqoWMGTMm559/fl577bVstNFGy3z+9ddfnxtuuCFt2rQpLX8KAKuDl156qdoqQOeee+5ixw0bNixvv/12qaHybectbPDgwdWezFoZLXhabGFt2rTJrFmzcvbZZ2fOnDl59NFH07Nnz4wdOzaHHnpoPvnkkzRu3Dh77bVXOnXqlI8++ij9+vX7Rte78MILc//996dGjRrp2rVrDjrooHTo0CFHHHHEEufUrFmz2ipJCy/9vkBVVVXp54WfbFzS532dBU/pLc6rr76aBx54IOPHj0+3bt2y++67p3bt2tl2222z7bbb5sADD8w+++yTJHnvvfcWmV+3bt1q7xe+nwX3sTQ1ftf7AQAAAL6ZHXbYIf37988HH3yQyZMnJ5kfqlqSX//61/nggw+SzA9DJfPDVAcddFAOOuig9OrVKwMHDszs2bPz4YcfZosttqg2f+HVlVZWTZs2rVbjBhtskPbt2+evf/1rpk2blv79+5cCVN+mL7SwIUOG5MQTT8zMmTPTpk2b/OhHP0rHjh3zyCOP5JlnnlnivP/sxfxnL2Vp+koLb7u3JBMmTFjiudmzZ6dv374ZO3ZsmjVrlj59+iRJWrdundatW+ewww5Lt27d8ve//z3jx4/PxIkT07BhwyXez8JhrwX3sTQ1fpO+0lfdDwCwYghQLWT48OFp0KBBHn300Vx33XX5+OOPq53/85//nH79+uXdd99Ns2bNsv/+++eUU04p/Wfj183/61//miuuuCINGjTIj3/84xV2XwCwvD300EPfeOwDDzyQCy644DvNK4eWLVtm5MiRy/QzF260TJ06NUly77335pNPPkmS/OEPf0iHDh2SzH8a7pv48MMPc//99ydJDjvssFx00UVJlk24Z8MNNyz9/M9//rPa6lHnnHNOJk2alC233DI9evRI69atM3LkyKy55poZOnRo6V7HjRuXL774IhtuuOHXbms3YMCAJPObarvttlu1ZtXCP/9ng+ubWpoaW7duneHDh2fjjTeutqXkJ598khkzZmSDDTYozV9cUw0AAAD4Zhbeqm9BqOSrtu8bMWJEhgwZkiR55ZVXvnJ3kXJuhXbnnXcu08+rUaNGqQexoK+0LPpC1113XWbOnJkGDRrkkUceKfVGHnzwwe9Ub+PGjbP22mtn8uTJGT58eObNm1d64O3pp5/OHXfckY033jg/+clPssEGG5TmXXXVVdlvv/1K719//fW0bt36K/tBtWvXzpAhQ/LBBx+kdu3a6d69e7XPrKioqBaEWnPNNZf6fpamxgVb+iXze5wdO3ZMMj/oNWLEiLRp0yZrrbVWtfoSfSUAWNEEqBay2267LXH7lueffz6nn356zjvvvOy888754IMP0rdv34waNSq/+93vvnZ+ktxzzz1JkpdffnnZFw8AZfLll19m0KBBSZJ11lkngwcPrrZ1WjJ/27M99tgj8+bNy4ABA3LWWWdl1qxZ32refz7N9m289tpr1baoW1jHjh2/VdPkq8yaNSufffZZ6f3s2bMzevToXH311aVjW2+9dZL/a3glyaOPPpr69etn+PDh1QJUX7WF38Lzhw4dmjfffDPz5s0r/b2SfP1Tfkuy8847p0GDBpk0aVJuu+22tGrVKltttVWef/75DBgwIFVVVaVtEw844ID86U9/ytSpU/Ozn/0sxx9/fGbOnJnf/va3pbDSgw8+mP/6r/9a7LW22WabbLrppnn77bfz0ksv5ayzzsqRRx6Zxo0b591336323e29997f6n6WpsYDDjggw4cPz7///e9ccskl+dGPfpQJEyakb9++efvtt1NZWZmnn3466667btZYY43SNUaMGJH27dunSZMmy3RLSQAAAFhdrbfeemnVqlW1Vcu/KkB12GGHlQJUZ555Znr16pWOHTtmxowZeeqpp/L4448nSbbYYou0bNly+Ra/nIwdO7b0c1VVVSZOnJjbb7+91AdaXF/p2/aFFnzG5MmT8/jjj2errbbK008/XdoKccFnfJMVmBZWo0aN7LPPPnnwwQfz0UcfpU+fPjnyyCMzceLEXHHFFfnwww/z1ltv5bzzzkuzZs3StGnTjB07Nr/5zW9SWVmZVq1a5U9/+lOpJ9S9e/ecc845S7zeYYcdll//+teZPXt2jj/++PTs2TPt2rXLl19+mfvvv7+0hd+CVc+X1k477fSNa9xrr71yxRVXZObMmenTp0/OOeecNG7cOA888EApWHfBBRfkqKOOSjJ/Nfs5c+bkk08+yXvvvZd58+Zlk002WeoaAYClI0D1Dd1www055JBDcvjhhyeZnyz/xS9+kaOPPjofffTRKvtHNwB8V4899lhmzpyZJPn+97+/2IZDixYt8t///d8ZPHhwvvzyyzz11FOZOnXqt5p34IEHfueaFyxpvjiPPPJINt988+98jYW99tpr6dq16xLPb7PNNqXt6Pbcc8/ccccdmTdvXu68887FPp24cNPsP7Vt2zZt2rTJe++9l3fffTeHHHLIImPGjRv3Le4iWXPNNXPxxRenV69emTJlyiJNqvXWWy+nn3566T66du2awYMH5/HHHy81Kxf4wQ9+sMTwVDL/SbsrrrgiRx99dCZOnJiBAwdm4MCBi4z74Q9/WG0lrKWxNDUefvjheeyxxzJ8+PDF/l5OPvnkrLvuuklS7d/PXXfdlbvuuitXX3119t13329VJwAAABTN9ttvXwpQbbDBBl+5xd4+++yTQw89NA888EDGjh2bc889d5ExDRo0yOWXX77c6l3eFtffWaBevXrp1atXkmXTF9prr70yYsSIzJs3b7Hf5YLP+DbbHvbs2TNDhw7N+++/n/vvv7+0WtYCvXv3TmVlZZLkvPPOy1lnnZWPP/44J554YrVxLVu2zLHHHvuV1/rxj3+cl19+OYMHD87o0aPz05/+dJExLVq0yPnnn7/U95HM3+Lvm9bYrFmznHbaafnNb36TESNG5Oijj642dosttsgPfvCD0vvNN988r732Wj7++OPst99+6dq1a2688cZvVScA8M3VKHcBq4oRI0bkgQceSKdOnUqvk046KUny3nvvlbk6ACifhbfhO/jgg5c4bkEIOUnuv//+bz1vdVCzZs3Uq1cvbdq0yYknnpibb745NWvWTJJsu+22ueaaa7LFFlukXr16adKkSbp06ZK77rqrtDLWc889t8TPrlWrVm666abss88+ady4cSorK9OuXbucd955pabZa6+9lkmTJn2r2vfZZ5/cdddd2XXXXdOwYcPUqVMnrVu3zhFHHJH7778/zZo1SzI/AHXttdfmnHPOyeabb5569eplrbXWypZbbpm+ffvmF7/4xddea7PNNsvAgQPTvXv3bLLJJqlXr15q166dpk2b5n/+53/yu9/9Lpdccsm3uo+lrbFu3bq54447csopp6RNmzZZY4010qBBg9Lv64QTTiiN3WCDDXL22WendevWqV27dlq0aFFtVSoAAADgqy284tT222//teP79u2ba6+9Nl27ds0666yTWrVqZa211sqmm26a7t275/HHH0+7du2WZ8krTEVFRak/svfee+e+++4rPQC2LPpCJ5xwQnr27JkNNtgga6yxRlq0aJEDDzww11xzTWnMs88++61qX7Dq0rHHHptWrVqV7qNLly753//93xx00EGlsfvvv39uv/32/M///E8aNmyY2rVrp2XLljnqqKNy3333lR5kW5LatWvnhhtuyGWXXZYddtghDRs2TM2aNVO/fv1sscUW6dGjRx599NFSL+vbWJoajz/++Fx33XXZYYcdUr9+/ayxxhrZcMMNc9JJJ+WOO+4oBceS+eGxrbfeOpWVlWnQoMF3qhEA+OYqqmygu1jnnntuPv7449LqAh06dEj37t2r/fG2QNOmTav9YbO4+Qt7+eWX8+Mf/zjPPvuslasAAAAAAAAAAKCMrED1DW2yySb597//ndatW5deY8aMya9//etqe0oDAAAAAAAAAACrDgGqb+j444/Pn/70p/Tr1y+jRo3KkCFDct555+XLL79M06ZNy10eAAAAAAAAAADwLdQqdwGrin322SdXXXVV/vCHP+QPf/hDGjRokF133TVnn312uUsDAAAAAAAAAAC+pYqqqqqqchcBAAAAAAAAAABQDrbwAwAAAAAAAAAACkuACgAAAAAAAAAAKKxa5S6g3IYNG5aqqqrUrl273KUAAAAA8B9mz56dioqKdOrUqdylLEJfCQAAAGDltTR9pcIHqKqqqlJVVVXuMgAAAABYjJW5b6OvBAAAALDyWpq+TeEDVAueEGzfvn2ZKwEAAADgP7355pvlLmGJ9JUAAAAAVl5L01eqsRzrAAAAAAAAAAAAWKkJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBh1Sp3AQAAAADlUFVVlblz52bOnDnlLqXQateunZo1a5a7DAAAAIBvbO7cuZk9e3a5yyi0Zd1TEqACAAAACqWqqioTJ07M2LFjM3fu3HKXQ5KGDRumefPmqaioKHcpAAAAAEtUVVWVzz77LBMnTix3KWTZ9pQEqAAAAIBCWdDkql+/furXr59atWoJ7pRJVVVVpk2bls8//zxJst5665W5IgAAAIAlW9BXWnfddVNZWamnVCbLo6ckQAUAAAAUxty5czNp0qQ0bdo0TZo0KXc5JKlXr16S5PPPP8+6665rOz8AAABgpTR37txSeGqdddYpdzmFt6x7SjWWRVEAAAAAq4LZs2enqqoqa665ZrlLYSGVlZVJ5v9+AAAAAFZGC/oWC/oYlN+y7CmVPUA1fvz4nH322encuXM6deqUE044Ie++++4Sx//xj39Mu3btFnm9//77K7BqAAAAYFVmefWVi98HAAAAsKrQx1h5LMvfRdm38Dv55JNTo0aN3HTTTamsrMzvfve7HHPMMRk0aFBpua2FjRw5Mttvv32uvPLKascbN268okoGAAAAAAAAAABWE2VdgWrChAlp2bJl+vbtm/bt26dNmzY55ZRTMnbs2LzzzjuLnfP2229ns802S9OmTau9vutehgAAAACrqilTpqRjx47ZaaedMmvWrBV67WnTpuXuu+9eodcEAAAAYNnQV5qvrAGqRo0a5corr8wmm2ySJBk3blxuueWWNG/ePG3btl3snJEjRy7xHAAAAMCKMmnGpHw6+dMlvibNmLTCann88cezzjrrZMqUKRk0aNAKu26S3HrrrbnllltW6DUBAAAAVmX6SvOtTH2lsm/ht0Dv3r3zwAMPpE6dOrn++utTWVm5yJgvvvgi48aNyyuvvJI777wzEydOTMeOHXPWWWdlo402KkPVAAAAQBFNmjEpfZ/vm3HTxi1xTJPKJum9S+80qNtgudfz8MMPp0uXLhkzZkzuu+++7L///sv9mgtUVVWtsGsBAAAArOr0lf7PytRXKusKVAs7+uij8/DDD+f73/9+Tj311AwfPnyRMW+//XaSpGbNmvnVr36Vq666KtOmTUu3bt0ybtyS/2EBAAAALEvTZk/LuGnjUq9WvaxTb51FXvVq1cu4aeMybfa05V7Le++9l9dffz0777xz9tlnnwwdOjTvvfde6fzo0aNz3HHHZZtttkmnTp1y3HHHZeTIkaXzgwcPzsEHH5yOHTtmxx13zLnnnptJkyZV+/zjjz8+nTp1SpcuXdKrV6+MHTs2SdKvX79ce+21+fjjj9OuXbt89NFHGT9+fH76059mhx12SIcOHXLYYYdl6NChy/17AAAAAFgV6CutnH2llSZA1bZt22y55Zbp27dvWrZsmbvuumuRMZ07d87QoUPzq1/9KltssUW22267XHfddZk3b1769+9fhqoBAACAIqusXZm111h7kVdl7UVX1l5eHnrooVRWVmaXXXbJHnvskTp16uTee+8tne/Zs2fWXXfdPPzww3nwwQdTo0aN9OjRI8n81b579OiRH/zgB3niiSdy7bXX5pVXXsmvf/3rJMmYMWPSrVu3tGrVKg899FBuuOGGTJkyJYcddlimTZuW7t27p3v37mnevHn+9re/Zb311kufPn0yY8aM3HXXXXnsscey0UYb5ZRTTsm0acu/6QcAAACwqtBXWrn6SmXdwm/8+PEZMmRI9t1339SsWTNJUqNGjbRp0yaff/75Yuc0aFB9ebLKysq0bNkyY8aMWe71AgAAAKxM5syZk8ceeyy77rpr6tWrlyTp2rVrBgwYkF69eqVevXr54IMPsvPOO6dly5apVatWLrvssvz73//OvHnzMmbMmMyaNSvrr79+WrRokRYtWuSGG27I3LlzkyT33ntv1l133Vx44YWla1599dXp3LlznnrqqRx88MGprKxMzZo107Rp0yTJBx98kE033TQbbLBB1lhjjZx//vk54IADSr0fAAAAAMpPX6m6sq5A9fnnn6dXr17VltuaPXt2RowYkTZt2iwy/p577skOO+yQGTNmlI5NmTIlo0ePTtu2bVdIzQAAAAAri8GDB2fs2LHZb7/9Ssf222+/fPnll3n88ceTJGeeeWZuvfXWdO7cOT169Mhzzz2XzTffPDVq1Mjmm2+e733veznppJPyP//zP/n5z3+eUaNGlfosI0aMyHvvvZdOnTqVXjvttFNmzpxZbTn3hfXo0SODBg3KDjvskJ/85Cd56KGH0rZt26yxxhrL/wsBAAAA4BvRV6qurCtQbbbZZunSpUt+8Ytf5JJLLkn9+vVzww035Msvv8wxxxyTuXPn5osvvsjaa6+dunXrZtddd83VV1+dn/3sZznttNMyY8aMXHnllWncuHEOOuigct4KAAAAwArXv3//JMlPf/rTRc7dd999OeSQQ3LEEUdkn332yeDBgzNkyJBceeWV6devXx555JE0adIkv/3tb3Pqqafm+eefz4svvpiePXtm6623zh133JF58+alc+fOueiiixb5/LXXXnuxNe25557561//mr/+9a958cUXc/PNN+d3v/tdHnjggWyyySbL9gsAAAAA4FvRV6qurCtQVVRUlJbnOuOMM/LDH/4wkyZNyt133531118/n376abp06ZInnngiSbLeeuvl9ttvz9SpU3P44YfnmGOOydprr5077rgjdevWLeetAAAAAKxQX3zxRQYPHpyDDz44jzzySLXXIYcckjfffDOvv/56Lr744syePTsHH3xwrrjiijz66KMZO3Zshg4dmn/84x+57LLLsvHGG+eYY47JjTfemMsuuywvv/xyxo8fn0022STvvfde1ltvvbRu3TqtW7dOgwYNctlll+Xtt99OMr+/s8CsWbNy+eWX58MPP8x+++2XSy65JIMGDUqNGjXyl7/8pUzfFAAAAAAL01daVFlXoErmp8r69OmTPn36LHKuZcuWGTlyZLVjm2++eW655ZYVVB0AAADAkk2bPW2pji9LAwYMyJw5c/KTn/wkbdq0qXbupJNOyh//+Mfcd999efnll/PBBx+kV69eWWuttfLQQw+ldu3a2XLLLTNr1qzcc889qV27dg499NDMmDEjjz/+eDbccMM0atQo3bp1y/3335+ePXvm1FNPTUVFRa644oqMGDGi9NRfZWVlJk2alFGjRqVly5Z5/fXX8+qrr6Z3795p0qRJBg8enKlTp6ZTp07L/TsBAAAAWFXoK61cfaWyrkAFAAAAsCqqrF2ZJpVNMn3O9IyfPn6R1/Q509Okskkqa1cutxr69++fnXbaaZEmV5K0atUqe+65Z5566qn8/ve/T40aNXLMMcdk//33z0svvZQbb7wxG2ywQdq2bZt+/frlpZdeyoEHHphu3bqlVq1auemmm1KjRo20atUqd911V6ZPn55u3brlyCOPTEVFRW6//fass846SZK99torTZs2zfe///2MGDEiv/vd79KqVaucfPLJ2WeffXL//ffnt7/9bbbddtvl9l0AAAAArCr0lVbOvlJFVVVV1XK/ykrszTffTJK0b9++zJUAAAAAy9uMGTMyatSobLTRRqlbt+53+qxJMyZ95ROBlbUr06Bug+90jaL4qt/Lyty7WZlrAwAAAJYtfaWVz9f9Tpamd1P2LfwAAAAAVkUN6jbQyAIAAABgqekrrXxs4QcAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFFatchcAAAAAsEqaNCmZNm3J5ysrkwYNltvld9ttt3z88cel97Vr106TJk2y22675bTTTkujRo2+0ef069cvf/zjH/Pcc88tccwnn3ySYcOGZf/99//OdQMAAAAUnr7SSkeACgAAAGBpTZqU9O2bjBu35DFNmiS9ey/XZlf37t3TvXv3JMmMGTPy9ttv54orrsgrr7ySe++9N2uttdYyuc4555yTFi1arPSNLgAAAICVnr7SSkmACgAAAGBpTZs2v8lVr978JwKXdH7atOXa6KqsrEzTpk1L71u1apXNN988+++/f2655Zacfvrpy+3aAAAAAHwL+korpRrlLgAAAABglVVZmay99qKvxTW/VpD1118/e+65ZwYOHJgkmTx5cnr37p3OnTtnm222yY9//OO8+eabi8z7/e9/Xxpz4YUXZtr/W0b+qKOOytChQ/PHP/4xu+22W5LkjTfeSLdu3dKpU6dst912Oe200/LJJ5+suJsEAAAAWNXpK61UfSUBKgAAAIDVzKabbpoPPvggU6ZMyfHHH5/Ro0fnD3/4Qx544IFstdVWOfzwwzNixIjS+I8//jhDhgzJrbfemuuvvz4vv/xyevXqlSTp169fOnXqlH333TcPPfRQ5s2blxNPPDHbbbddHn300dx222355JNP8vOf/7xctwsAAADAMlLUvpIt/AAAAABWM/Xr10+SPPfccxk2bFiGDBmSxo0bJ0l69uyZv//977njjjvyy1/+MklSp06dXHXVVWnSpEmS5MILL0z37t3z/vvvp3Xr1qldu3bq1q2bxo0bZ9KkSZkwYULWXXfdtGzZMhUVFbn66qszfvz48twsAAAAAMtMUftKAlQAAAAAq5nJkycnST788MMkye67717t/KxZszJz5szS+w033LDU5EqSjh07JkneeeedtG7dutrcBg0a5Cc/+Un69u2ba6+9NjvttFN22WWX7L333svlXgAAAABYcYraVxKgAgAAAFjNDB8+PBtuuGFq166dtdZaK/37919kTJ06dUo/16xZs9q5uXPnJklq16692M8/66yz0q1btwwePDhDhgxJnz598oc//CGPPPJItc8FAAAAYNVS1L5SjbJdGQAAAGBVN21aMnnyoq9p08pW0meffZZnn302BxxwQDbddNNMmTIls2bNSuvWrUuvm266Kc8++2xpzujRozNlypTS+9deey0VFRVp27btIp//73//OxdddFHWWWedHH744bnmmmty880357333su//vWvFXKPAAAAAKs8faWVqq9kBSoAAACApVVZmTRpkowbl0yfvvgxTZrMH7ccTZs2LWPHjk2SzJgxIyNHjszVV1+dli1b5thjj03dunWz+eab54wzzsgFF1yQ9ddfP/fdd18efvjh3HrrraXPmTlzZs4444z07NkzEyZMSN++fXPggQemRYsWSZI111wzH3/8cT777LM0bNgwAwcOzIwZM3LCCSekRo0aefjhh9OgQYNsvPHGy/V+AQAAAFZ5+korZV9JgAoAAABgaTVokPTu/dVPBFZWzh+3HN16662lhlVlZWWaN2+evfbaK927d8+aa65ZGnPFFVfkzDPPzPTp09OmTZv069cvO+64Y+lzttxyy2y++eb58Y9/nIqKiuy3334599xzS+cPO+ywnHPOOfn+97+fIUOG5Oabb85vf/vbHHrooZk7d2622mqr/O///m/WWmut5Xq/AAAAAKs8faWVsq9UUVVVVVXWCsrszTffTJK0b9++zJUAAAAAy9uMGTMyatSobLTRRqlbt265y+H/+arfy8rcu1mZawMAAACWLX2llc/X/U6WpndTY5lXBwAAAAAAAAAAsIoQoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwapW7AJa9CdMnZNLMSeUuAwBWSg3WaJBG9RqVuwwAAAAAAABgJSFAtRqaNHNSnnznyUydPbXcpQDASmXN2mtm3032FaACAFJVVVXuEliI3wcAAACwqtDHWHksy9+FANVqaursqZkya0q5ywAAAICVSu3atVNRUZGpU6emXr165S6H/2fatGlJ5v9+AAAAAFZGC/oW06ZN01daSSzLnpIAFQAAAFAYNWvWTIMGDTJ27NjMnDkz9evXT61atVJRUVHu0gqpqqoq06ZNy+eff56GDRumZs2a5S4JAAAAYLFq1qyZhg0b5vPPP0+SVFZW6imVyfLoKQlQAQAAAIXSvHnz1KtXL59//nm+/PLLcpdDkoYNG6Z58+blLgMAAADgKy3oXywIUVFey7KnJEAFAAAAFEpFRUUaNmyYBg0aZO7cuZkzZ065Syq02rVrW3kKAAAAWCVUVFRkvfXWy7rrrpvZs2eXu5xCW9Y9JQEqAAAAoJAqKipSq1at1KqlPQIAAADAN1ezZk0PhK1mapS7AAAAAAAAAAAAgHIRoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACqvsAarx48fn7LPPTufOndOpU6eccMIJeffdd5c4fsKECenVq1e22267bLfddundu3emTZu2AisGAAAAAAAAAABWF2UPUJ188sn58MMPc9NNN+Whhx5K3bp1c8wxx2T69OmLHf/Tn/40H374YW677bZcc801eeGFF/KLX/xiBVcNAAAAAAAAAACsDsoaoJowYUJatmyZvn37pn379mnTpk1OOeWUjB07Nu+8884i44cNG5ahQ4fm8ssvzxZbbJEdd9wxF198cQYMGJAxY8aU4Q4AAAAAAAAAAIBVWVkDVI0aNcqVV16ZTTbZJEkybty43HLLLWnevHnatm27yPhXX301TZs2TZs2bUrHtt9++1RUVOS1115bYXUDAAAAAAAAAACrh1rlLmCB3r1754EHHkidOnVy/fXXp7KycpExY8aMyXrrrVftWJ06ddKwYcN8+umnK6pUAAAAAAAAAABgNVHWFagWdvTRR+fhhx/O97///Zx66qkZPnz4ImOmT5+eOnXqLHJ8jTXWyMyZM1dEmQAAAAAAAAAAwGpkpQlQtW3bNltuuWX69u2bli1b5q677lpkTN26dTNr1qxFjs+cOXOxK1YBAAAAAAAAAAB8lbIGqMaPH5+BAwdm7ty5pWM1atRImzZt8vnnny8yvnnz5oscnzVrViZOnJhmzZot93oBAAAAAAAAAIDVS1kDVJ9//nl69eqVoUOHlo7Nnj07I0aMSJs2bRYZv9122+Wzzz7L+++/Xzr28ssvJ0m23nrr5V8wAAAAAAAAAACwWilrgGqzzTZLly5d8otf/CKvvvpq3n777Zxzzjn58ssvc8wxx2Tu3LkZO3ZsZsyYkSTp2LFjtt5665x55pl544038tJLL+Wiiy7KgQceaAUqAAAAAAAAAABgqZU1QFVRUZGrr746nTt3zhlnnJEf/vCHmTRpUu6+++6sv/76+fTTT9OlS5c88cQTpfHXXnttWrZsmaOPPjpnnHFGdtlll/Tp06ectwEAAAAAAAAAAKyiapW7gLXXXjt9+vRZbAiqZcuWGTlyZLVj66yzTq655poVVB0AAAAAAAAAALA6K+sKVAAAAAAAAAAAAOUkQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFi1yl0AAAAAAFB+E6ZPyKSZk8pdBgCstBqs0SCN6jUqdxkAACwHAlQAAAAAQCbNnJQn33kyU2dPLXcpALDSWbP2mtl3k30FqAAAVlMCVAAAAABAkmTq7KmZMmtKucsAAAAAWKFqlLsAAAAAAAAAAACAchGgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwyh6gmjhxYi688MLssssu2XrrrXP44Yfn1VdfXeL4P/7xj2nXrt0ir/fff38FVg0AAAAAAAAAAKwOapW7gJ49e2b8+PG58sor07hx49xzzz057rjj0r9//7Rp02aR8SNHjsz222+fK6+8strxxo0br6iSAQAAAAAAAACA1URZV6B6//3388ILL+Siiy7Ktttum4033jjnn39+mjVrloEDBy52zttvv53NNtssTZs2rfaqWbPmCq4eAAAAAAAAAABY1ZU1QNWoUaPceOON2XLLLUvHKioqUlVVlUmTJi12zsiRI9O2bdsVVSIAAAAAAAAAALAaK2uAqn79+unatWvq1KlTOvbkk0/mgw8+SJcuXRYZ/8UXX2TcuHF55ZVX8r3vfS9dunTJqaeemlGjRq3IsgEAAAAAAAAAgNVEWQNU/+m1117Lz3/+8+y+++7ZbbfdFjn/9ttvJ0lq1qyZX/3qV7nqqqsybdq0dOvWLePGjVvR5QIAAAAAAAAAAKu4WuUuYIFnnnkmZ511Vjp27Jgrr7xysWM6d+6coUOHpkGDBqVj1113XXbdddf0798/J5xwwooqFwAAAAAAAAAAWA2sFCtQ3XXXXTnttNOyyy675KabbkrdunWXOHbh8FSSVFZWpmXLlhkzZszyLhMAAAAAAAAAAFjNlD1Adc8996Rv37454ogjcvXVV6dOnTpfOXaHHXbIjBkzSsemTJmS0aNHp23btiuiXAAAAAAAAAAAYDVS1gDVqFGjctlll2XPPffMiSeemPHjx2fs2LEZO3ZsJk+enLlz52bs2LGlwNSuu+6aqqqq/OxnP8s777yTN998M6eddloaN26cgw46qJy3AgAAAAAAAAAArILKGqB6+umnM3v27AwaNChdunSp9rr00kvz6aefpkuXLnniiSeSJOutt15uv/32TJ06NYcffniOOeaYrL322rnjjju+cts/AAAAAAAAAACAxalVzoufdNJJOemkk75yzMiRI6u933zzzXPLLbcsz7IAAAAAAAAAAICCKOsKVAAAAAAAAAAAAOUkQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFFbZA1QTJ07MhRdemF122SVbb711Dj/88Lz66qtLHD9hwoT06tUr2223Xbbbbrv07t0706ZNW4EVAwAAAAAAAAAAq4uyB6h69uyZ119/PVdeeWUeeuihbLHFFjnuuOPy3nvvLXb8T3/603z44Ye57bbbcs011+SFF17IL37xixVcNQAAAAAAAAAAsDooa4Dq/fffzwsvvJCLLroo2267bTbeeOOcf/75adasWQYOHLjI+GHDhmXo0KG5/PLLs8UWW2THHXfMxRdfnAEDBmTMmDFluAMAAAAAAAAAAGBVVtYAVaNGjXLjjTdmyy23LB2rqKhIVVVVJk2atMj4V199NU2bNk2bNm1Kx7bffvtUVFTktddeWyE1AwAAAAAAAAAAq49a5bx4/fr107Vr12rHnnzyyXzwwQfp0qXLIuPHjBmT9dZbr9qxOnXqpGHDhvn000+Xa60AAAAAAAAAAMDqp6wrUP2n1157LT//+c+z++67Z7fddlvk/PTp01OnTp1Fjq+xxhqZOXPmiigRAAAAAAAAAABYjaw0Aapnnnkmxx13XDp06JArr7xysWPq1q2bWbNmLXJ85syZqaysXN4lAgAAAAAAAAAAq5mVIkB111135bTTTssuu+ySm266KXXr1l3suObNm+fzzz+vdmzWrFmZOHFimjVrtiJKBQAAAAAAAAAAViNlD1Ddc8896du3b4444ohcffXVi92ib4Htttsun332Wd5///3SsZdffjlJsvXWWy/3WgEAAAAAAAAAgNVLWQNUo0aNymWXXZY999wzJ554YsaPH5+xY8dm7NixmTx5cubOnZuxY8dmxowZSZKOHTtm6623zplnnpk33ngjL730Ui666KIceOCBVqACAAAAAAAAAACWWlkDVE8//XRmz56dQYMGpUuXLtVel156aT799NN06dIlTzzxRJKkoqIi1157bVq2bJmjjz46Z5xxRnbZZZf06dOnnLcBAAAAAAAAAACsomqV8+InnXRSTjrppK8cM3LkyGrv11lnnVxzzTXLsywAAAAAAAAAAKAgyroCFQAAAAAAAAAAQDkJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABRWre/6ASNHjszo0aPTrFmzdOjQITVqyGQBAAAAsOrQ3wIAAAAotm8UoJo1a1auuOKKvPXWW7nrrruSJHPmzEnPnj0zaNCg0rg2bdrk6quvTtu2bZdPtQAAAADwLehvAQAAALAk3+hxuosuuih33nlnhg8fXjp255135k9/+lOSZOedd06HDh3y7rvv5tRTT83s2bOXT7UAAAAA8C3obwEAAACwJF8boJo6dWoee+yx1K9fPzfddFPp+D333JOKiooce+yxufnmm3P//fdn//33zwcffJCXX355uRYNAAAAAN+U/hYAAAAAX6Wiqqqq6qsGbLbZZqmoqFjsuQVT//N8VVVVKioq8tZbby2jMpefN998M0nSvn37Mley7IyeODoPjXgoU2ZNKXcpALBSWavOWjnkvw7Jhg03LHcpAAB8Q8uid7O8+lurW19JTwkAlkxfCQBg1bM0vZuvXYHqkUceSZI0btw4jz76aJ555plsv/32qaqqypZbbplnn302zzzzTB5//PFsvPHGSZLzzz8/zzzzzHe4BQAAAABYNvS3AAAAAPgqtb5uwGabbZaddtopL7zwQo477risueaaGT16dCoqKnLiiSemRYsWGTZsWM4888yMGTMm9evXzwEHHJCGDRuugPIBAAAA4KvpbwEAAADwVb52Baok+eUvf5ltttkmn3/+eUaNGpW6devmnHPOyZ577pkk+fLLL/PZZ5+lfv36+fWvf625BAAAAMBKRX8LAAAAgCX52hWokqRp06a5++678+GHH+bLL7/MhhtumDXXXLN0vl27dunbt2923333NG7ceLkVCwAAAADfhv4WAAAAAEvyjQJUC7Rq1Wqxx5s3b54f/vCHy6QgAAAAAFhe9LcAAAAA+E/faAs/AAAAAAAAAACA1ZEAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIVV69tOnDx5cqZOnZp58+Ytcm799df/TkUBAAAAwPKmvwUAAABA8i0CVO+//37OOeecvP7664s9X1FRkREjRnznwgAAAABgedDfAgAAAGBhSx2g6tOnT/7xj38sh1IAAAAAYPnT3wIAAABgYUsdoPr73/+eioqKdOvWLXvssUfq1auXioqK5VEbAAAAACxz+lsAAAAALGypA1SNGjXKlClT0rt37+VRDwAAAAAsV/pbAAAAACysxtJOOPLIIzNt2rQMHz58edQDAAAAAMuV/hYAAAAAC1vqFajq1q2b9ddfP0ceeWQ6d+6cJk2apGbNmqXzFRUVueiii5ZpkQAAAACwrOhvAQAAALCwpQ5QXXLJJamoqEhVVVX+8pe/VDtXVVWlwQQAAADASk1/CwAAAICF/f/s3Xl0VeW5P/BvQhIGEQREhorVX61gHXBCQUVFO1CrdazWCk5tba0V9XrrVOt8Ha6z1qm1zlqn4nBba9VqS6uWQUQtKt62ah0ABRRkSiDk9wcr5wYBJZqQwP581spaZJ/37POck73cr8/57nc3OkA1YMCA5qgDAAAAAFYK/S0AAAAAGmp0gOq2225rjjoAAAAAYKXQ3wIAAACgofKWLgAAAAAAAAAAAKClrNAKVP3790/Pnj3zhz/8IZtvvnnKysqWO7asrCwTJkxoqvoAAAAA4DPT3wIAAABgeVYoQFVdXZ3q6uokSU1NzceO/bjmEwAAAAC0BP0tAAAAAJZnhQJU559/ftq3b1/6NwAAAACsSvS3AAAAAFieFQpQ7bPPPsv8NwAAAACsCvS3AAAAAFie8pYuAAAAAAAAAAAAoKUIUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYjQ5QPfDAA/nDH/6w1Pba2trcdtttue+++5qkMAAAAABoDvpbAAAAADRU0dgnnHzyyenVq1e+9rWvLbG9vLw8V1xxRaqqqrL//vs3WYEAAAAA0JT0twAAAABo6BMDVHV1dTn88MPz5ptvlra999572W233ZYYN3/+/MyePTsdO3Zs+ioBAAAA4FPS3wIAAADg43xigKqsrCzDhg3Lj3/849LvtbW1efvtt5c5fuedd27aCgEAAADgM9DfAgAAAODjrNAt/L785S/n9NNPz+zZs3PppZdmzTXXzPe///3S42VlZamoqEifPn2y0047NVuxAAAAAPBp6G8BAAAAsDwrFKBKku985ztJkpqamnTs2DGHHXZYc9UEAAAAAE1OfwsAAACAZVnhAFW9+qXOP/zww8yZMyeLFi1aakzv3r0/e2UAAAAA0Az0twAAAABoqNEBqn//+9858cQT8/zzzy/z8bKysrz00kufuTAAAAAAaA76WwAAAAA01OgA1RlnnJEJEyY0QykAAAAA0Pz0twAAAABoqNEBqvHjx6esrCzf+c538uUvfznt27dPWVlZc9QGAAAAAE1OfwsAAACAhhodoOrSpUtmz56dn/3sZ81RDwAAAAA0K/0tAAAAABoqb+wThg0blrlz52bixInNUQ8AAAAANCv9LQAAAAAaavQKVO3atUvv3r0zbNiwDBw4MGuvvXbatGlTerysrCxnnHFGkxYJAAAAAE1FfwsAAACAhhodoDr33HNTVlaWurq6/OlPf1risbq6Og0mAAAAAFo1/S0AAAAAGmp0gGrAgAHNUQcAAAAArBT6WwAAAAA01OgA1W233dYcdQAAAADASqG/BQAAAEBD5S1dAAAAAAAAAAAAQEtp9ApUG2+88cc+XlZWlpdeeulTFwQAAAAAzUl/CwAAAICGGh2gqqur+0yPAwAAAEBL0t8CAAAAoKFGB6guvfTSJX5fuHBhPvzww/zud7/LlClTcvHFFzdZcQAAAADQ1PS3AAAAAGio0QGq3XfffZnb999//wwZMiQPPvhgttpqq89cGAAAAAA0B/0tAICCmzw5mT69pasAgNapW7ekV6+WrmKla3SAannatm2btm3b5pFHHslZZ53VVLsFAAAAgJVCfwsAoCCmT0+uvVaICgA+qlu35KijBKhWxC9/+cslfq+rq0tNTU3Gjx+fyZMnp1OnTk1WHAAAAAA0Nf0tAAAyfXoyZUpLVwEAtBKNDlBdcsklKSsrW2p7XV1dkmTo0KGfvSoAAAAAaCb6WwAAAAA01OgAVe/evZfaVl5enk6dOmX77bfPj3/84yYpDAAAAACag/4WAAAAAA01OkD1xBNPNEcdAAAAALBS6G8BAAAA0FCjA1T1ampqMn78+EyfPj3du3fPlltumcrKyqasDQAAAACajf4WAAAAAMmnDFD98Y9/zBlnnJHp06eXtq2zzjo599xzM3jw4CYrDgAAAACag/4WAAAAAPXKG/uE8ePH59hjj820adNSV1eXJKmrq8vUqVPzox/9KC+88EKTFwkAAAAATUV/CwAAAICGGh2guvrqq7Nw4cIMGTIkjz32WF566aU89thjGTJkSBYsWJCrrrqqOeoEAAAAgCahvwUAAABAQ40OUE2YMCGVlZW57LLL0qdPn5SVlaVPnz655JJLUlFRkfHjxzdHnQAAAADQJPS3AAAAAGio0QGqJKmoqEhlZeUS26qqqlJRUdEkRQEAAABAc9LfAgAAAKBeowNU/fr1y/z583Puueemuro6SVJTU5Nzzjkn8+fPz5e+9KUmLxIAAAAAmor+FgAAAAANNfqSusMPPzzPPvts7rrrrowcOTJrr712pk2blpqampSVleXQQw9tjjoBAAAAoEnobwEAAADQUKNXoPryl7+cU045JRUVFamurs7bb7+d6urqlJeX5/jjj8+Xv/zl5qgTAAAAAJqE/hYAAAAADTV6BaokOfTQQ7PnnnvmT3/6U6ZNm5a11147gwcPTvfu3Zu6PgAAAABocvpbAAAAANT7VAGqJOnatWv23XffpqwFAAAAAFYa/S0AAAAAkk8RoKqtrc1tt92WsWPHZs6cOVm0aNESj5eVleWWW25psgIBAAAAoCnpbwEAAADQUKMDVBdffHFuvvnmJEldXd1Sj5eVlX3mogAAAACguehvAQAAANBQowNUDzzwQJJkww03zKabbpqqqqqmrgkAAAAAmo3+FgAAAAANNTpAVVNTk/bt22fkyJGprKxsjpoAAAAAoNnobwEAAADQUHljn/DVr341NTU1effdd5ujHgAAAABoVvpbAAAAADTU6BWoTj311EyYMCEHHHBAdtttt6y99topL18yh/XjH/+4yQoEAAAAgKakvwUAAABAQ40OUD388MN5/fXXkyT33nvvMsdoMAEAAADQWulvAQAAANBQowNU11xzTZKkTZs26dmzZyorK5u8KAAAAABoLvpbAAAAADTU6ADVrFmzUlFRkUcffTS9evVqjpoAAAAAoNnobwEAAADQUHljn7DzzjunoqIia621VjOUAwAAAADNS38LAAAAgIYavQLVsGHDMnbs2Bx66KHZa6+90rlz55SXL5nD2n333ZusQAAAAABoSvpbAAAAADTU6ADV8OHDkyQzZszIiy++uNTjZWVlGkwAAAAAtFr6WwAAAAA01OgAVV1d3Wd6HAAAAABakv4WAAAAAA01OkD1yiuvNEcdAAAAALBS6G8BAAAA0FB5U+2opqYmDz74YIYNG9ZUuwQAAACAlUZ/CwAAAKCYGr0C1Uf94x//yN13352HHnoos2bNaoqaAAAAAGCl0d8CAAAAKLZPFaCqrq7O73//+9x9992ZMGFCkqSuri5J8sUvfrHJigMAAACA5qC/BQAAAEC9RgWoXn311dxzzz156KGH8uGHH5aaSmVlZTniiCOy1157pW/fvs1SKAAAAAB8VvpbAAAAAHzUCgWoRo4cmXvuuSfPP/98ksVX41VVVWW33XbL73//+yTJMccck/bt2zdfpQAAAADwKelvAQAAALA8KxSgOvXUU1NWVpa6urp86Utfyr777ps999wznTt3LjWYAAAAAKC10t8CAAAAYHnKGzO4Xbt26d+/fzbffPN07ty5uWoCAAAAgGahvwUAAADAR61QgOrQQw9Nly5dMn/+/Nx111058MADs8cee+SGG25o7voAAAAA4DPT3wIAAABgeVYoQHXKKadk1KhRufzyy7PDDjukrKws//jHP3LJJZekrKwsSfLggw/mgw8+aM5aAQAAAOBT0d8CAAAAYHkqVnhgRUWGDh2aoUOHZurUqbnvvvty//3356233kqSnHXWWTn33HMzcOBAV+4BAND8Jk9Opk9v6SoAoPXq1i3p1aulq2hV9LcAAAAAWJYVDlA11KNHjxx99NE5+uij88wzz+S+++7L448/nurq6jz11FNNXSMAACxt+vTk2muFqABgWbp1S446SoDqY+hvAQAAAFDvUwWoGho0aFAGDRqUWbNm5aGHHspvfvObpqgLAAA+2fTpyZQpLV0FALCK098CAAAAKLbyptpRp06dMmzYsNx///1NtUsAAAAAWGn0twAAAACKqckCVAAAAAAAAAAAAKsaASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsFpVgOqaa67J8OHDP3bM/fffn759+y7188Ybb6ykKgEAAAAAAAAAgNVFRUsXUO/mm2/OlVdemQEDBnzsuEmTJmXbbbfNpZdeusT2rl27Nmd5AAAAAAAAAADAaqjFA1RTp07NT3/60zz77LPZYIMNPnH8q6++mn79+qV79+4roToAAAAAAAAAAGB11uK38Js4cWI6d+6chx56KP379//E8ZMmTcqGG264EioDAAAAAAAAAABWdy2+AtWuu+6aXXfddYXGzpgxI9OmTcvYsWNz22235YMPPkj//v3zn//5nyu0ehUAAAAAAAAAAEBDLb4CVWO8+uqrSZI2bdrkwgsvzGWXXZa5c+fmO9/5TqZNm9bC1QEAAAAAAAAAAKuaFl+BqjEGDhyYMWPGpHPnzqVtV199dYYMGZKRI0fmyCOPbMHqAAAAAAAAAACAVc0qtQJVkiXCU0nSoUOHrLvuupk6dWoLVQQAAAAAAAAAAKyqVqkA1Z133pntttsu8+fPL22bPXt2Xn/99Wy44YYtWBkAAAAAAAAAALAqatUBqtra2rz33nulwNSQIUNSV1eXE088Mf/7v/+bF198Mcccc0y6du2affbZp4WrBQAAAAAAAAAAVjWtOkA1efLk7Ljjjnn44YeTJL169cott9ySOXPm5KCDDsphhx2WNddcM7feemvatWvXwtUCAAAAAAAAAACrmoqWLqChCy64YInf11133UyaNGmJbRtvvHF+9atfrcyyAAAAAAAAAACA1VSrXoEKAAAAAAAAAACgOQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYVW0dAE0vTZlbbLOGutkzao1W7oUAGhV2le2T5uyNi1dBgAAAAAAANCKCFCthnp17JVD+h/S0mUAQKu0sHZhS5cAAAAAAAAAtCICVKuhijYVOfiGg/Py5JdbuhQAaFU27rVx7vjeHS1dBgAAAAAAANCKCFCtpl6e/HKe+/dzLV0GAAAAAAAAAAC0auUtXQAAAAAAAAAAAEBLEaACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsFpVgOqaa67J8OHDP3bM+++/nxNOOCEDBgzIgAED8rOf/Sxz585dSRUCAAAAAAAAAACrk1YToLr55ptz5ZVXfuK4ESNG5M033yyNf+qpp3LWWWethAoBAAAAAAAAAIDVTUVLFzB16tT89Kc/zbPPPpsNNtjgY8c+99xzGTNmTB5++OF84QtfSJKcffbZ+d73vpf/+I//SI8ePVZGyQAAAAAAAAAAwGqixVegmjhxYjp37pyHHnoo/fv3/9ix48aNS/fu3UvhqSTZdtttU1ZWlmeffba5SwUAAAAAAAAAAFYzLb4C1a677ppdd911hcZOnTo1vXr1WmJbVVVV1lprrUyePLk5ygMAAAAAAAAAAFZjLb4CVWPMmzcvVVVVS21v27ZtqqurW6AiAAAAAAAAAABgVbZKBajatWuXmpqapbZXV1enQ4cOLVARAAAAAAAAAACwKlulAlQ9e/bMu+++u8S2mpqafPDBB+nRo0cLVQUAAAAAAAAAAKyqVqkA1YABAzJlypS88cYbpW2jR49Okmy11VYtVRYAAAAAAAAAALCKatUBqtra2rz33nuZP39+kqR///7Zaqutcvzxx+eFF17I3/72t5xxxhnZe++9rUAFAAAAAAAAAAA0WqsOUE2ePDk77rhjHn744SRJWVlZfv7zn2fdddfNoYcemuOOOy477bRTzjzzzJYtFAAAAAAAAAAAWCVVtHQBDV1wwQVL/L7uuutm0qRJS2zr1q1brrzyypVZFgAAAAAAAAAAsJpq1StQAQAAAAAAAAAANCcBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwqpo6QIAAAAAgJbXpqxN1lljnaxZtWZLlwIArU77yvZpU9ampcsAAKCZCFABAAAAAOnVsVcO6X9IS5cBAK3WwtqFLV0CAADNRIAKAAAAAEhFm4ocfMPBeXnyyy1dCgC0Ohv32jh3fO+Oli4DAIBmIkAFAAAAACRJXp78cp7793MtXQYAAADASlXe0gUAAAAAAAAAAAC0FAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMJq8QDVokWLcuWVV2bw4MHp379/jjjiiLzxxhvLHX///fenb9++S/183HMAAAAAAAAAAACWpaKlC7jmmmty11135fzzz0+PHj1y0UUX5fvf/35++9vfpqqqaqnxkyZNyrbbbptLL710ie1du3ZdWSUDAAAAAAAAAACriRZdgaqmpiY33nhjjjnmmOy8887p169fLrvsskydOjWPPfbYMp/z6quvpl+/funevfsSP23atFnJ1QMAAAAAAAAAAKu6Fg1QvfLKK5kzZ04GDhxY2tapU6d86UtfytixY5f5nEmTJmXDDTdcWSUCAAAAAAAAAACrsRYNUE2ZMiVJ0qtXryW2r7POOpk8efJS42fMmJFp06Zl7Nix2WOPPbLjjjvm6KOPzmuvvbZS6gUAAAAAAAAAAFYvLRqgmjdvXpKkqqpqie1t27ZNdXX1UuNfffXVJEmbNm1y4YUX5rLLLsvcuXPzne98J9OmTWv+ggEAAAAAAAAAgNVKRUu+eLt27ZIkNTU1pX8nSXV1ddq3b7/U+IEDB2bMmDHp3LlzadvVV1+dIUOGZOTIkTnyyCObv2gAAAAAAAAAAGC10aIrUNXfuu/dd99dYvu7776bnj17LvM5DcNTSdKhQ4esu+66mTp1avMUCQAAAAAAAAAArLZaNEDVr1+/dOzYMaNHjy5tmzVrVl566aVss802S42/8847s91222X+/PmlbbNnz87rr7+eDTfccKXUDAAAAAAAAAAArD5aNEBVVVWVYcOG5eKLL84f//jHvPLKKzn++OPTs2fPfOUrX0ltbW3ee++9UmBqyJAhqaury4knnpj//d//zYsvvphjjjkmXbt2zT777NOSbwUAAAAAAAAAAFgFtWiAKklGjBiR/fffP6eddloOOuigtGnTJr/61a9SVVWVyZMnZ8cdd8zDDz+cZPEt/2655ZbMmTMnBx10UA477LCsueaaufXWW9OuXbsWficAAAAAAAAAAMCqpqKlC2jTpk1+8pOf5Cc/+clSj6277rqZNGnSEts23njj/OpXv1pZ5QEAAAAAAAAAAKuxFl+BCgAAAAAAAAAAoKUIUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgVLV0AAAB8Ku3bJ9tvn8yc2dKVAEDr07nz4nMlAAAAAPCJBKgAAFglLVp//ZSPGNHSZQBAq7WottbS4wAAAACwAgSoAABYJZW3aZPfHXxwpr/8ckuXAgCtTreNN8437rijpcsAAAAAgFWCABUAAKus6S+/nHefe66lywAAAAAAAGAVZiV3AAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAEqAAAAAAAAAAAgMISoAIAAAAAAAAAAApLgAoAAAAAAAAAACgsASoAAAAAAAAAAKCwBKgAAAAAAAAAAIDCEqACAAAAAAAAAAAKS4AKAAAAAAAAAAAoLAEqAAAAAAAAAACgsASoAAAAAAAAAACAwhKgAgAAAAAAAAAACkuACgAAAAAAAAAAKCwBKgAAAAAAAAAAoLAqWroAAAAAAAAAgJWmfftk++2TmTNbuhIAaF06d158niwgASoAAAAAAACgMBatv37KR4xo6TIAoFVaVFtbyNvZCVABAAAAAAAAhVHepk1+d/DBmf7yyy1dCgC0Kt023jjfuOOOli6jRQhQAQAAAAAAAIUy/eWX8+5zz7V0GQBAK1HEVbcAAAAAAAAAAACSCFABAAAAAAAAAAAFJkAFAAAAAAAAAAAUlgAVAAAAAAAAAABQWAJUAAAAAAAAAABAYQlQAQAAAAAAAAAAhSVABQAAAAAAAAAAFJYAFQAAAAAAAAAAUFgCVAAAAAAAAAAAQGG1eIBq0aJFufLKKzN48OD0798/RxxxRN54443ljn///fdzwgknZMCAARkwYEB+9rOfZe7cuSuxYgAAAAAAAAAAYHXR4gGqa665JnfddVfOPffc3H333SkrK8v3v//91NTULHP8iBEj8uabb+bmm2/OlVdemaeeeipnnXXWSq4aAAAAAAAAAABYHbRogKqmpiY33nhjjjnmmOy8887p169fLrvsskydOjWPPfbYUuOfe+65jBkzJueff3422WSTDBo0KGeffXYefPDBTJ06tQXeAQAAAAAAAAAAsCpr0QDVK6+8kjlz5mTgwIGlbZ06dcqXvvSljB07dqnx48aNS/fu3fOFL3yhtG3bbbdNWVlZnn322ZVSMwAAAAAAAAAAsPqoaMkXnzJlSpKkV69eS2xfZ511Mnny5KXGT506damxVVVVWWuttZY5fkUsWLAgdXV1efHFFz/V81ury796eRbULmjpMgCgValsU7nanfOLru9FF+WLC8x5AOCjyitXn3lPTU1NysrKWrqMZVod+0p6SgCwbPpKqx99JQBY2urUU0oa11dq0QDVvHnzkiwOQTXUtm3bzJw5c5njPzq2fnx1dfWnqqG1NuA+qy4durR0CQAAza7DOuu0dAkAQDMrKytrtf2b1lrXZ6GnBAAUhb4SAKz+GtNXatEAVbt27ZIsTnzV/ztJqqur0759+2WOr6mpWWp7dXV1OnTo8Klq2HLLLT/V8wAAAAAoNn0lAAAAgNVDeUu+eP3t+N59990ltr/77rvp2bPnUuN79uy51Niampp88MEH6dGjR/MVCgAAAAAAAAAArJZaNEDVr1+/dOzYMaNHjy5tmzVrVl566aVss802S40fMGBApkyZkjfeeKO0rf65W221VfMXDAAAAAAAAAAArFZa9BZ+VVVVGTZsWC6++OJ07do1n/vc53LRRRelZ8+e+cpXvpLa2trMmDEja665Ztq1a5f+/ftnq622yvHHH58zzzwzc+fOzRlnnJG9997bClQAAAAAAAAAAECjldXV1dW1ZAG1tbW59NJLM3LkyMyfPz8DBgzI6aefnnXXXTdvvfVWdtttt5x//vnZd999kyTTp0/PWWedlb/85S9p27Zthg4dmlNOOSVt27ZtybcBAAAAAAAAAACsglo8QAUAAAAAAAAAANBSylu6AAAAAAAAAAAAgJYiQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFJUAFAAAAAAAAAAAUlgAVrOYWLVrU0iW0qKK//5VldfmcV5f3AcBnt7qfE1b397cyrCqf4apSJwCtU9HPI0V//yvL6vI5ry7vA4DPbnU/J6zu729lWFU+w1WlTmgqAlTQSpx88snp27fvx/7suuuuK7y/urq63HfffTnhhBMaXcvw4cPTt2/fnH766Ss0fp999knfvn3Tr1+//Pvf/2706zWHSZMm5ZBDDsk777zTJPurqanJ5Zdfnt122y39+/fP0KFDc+eddzZqHzNmzMhFF12UoUOHZvPNN8+WW26Zgw46KA888ECT1NhSHn/88Rx++OErPL4IxwsAK88nzZ/69u2bq666aoX3N2PGjJx++ul56KGHGlXHW2+9VXq9CRMmLHdc/Tyr4U///v3z9a9/PVdeeWXmz5/fqNdNkquuuip9+/bN0KFDV6jOESNGZNy4cZ849sMPP8zZZ5+dXXbZJVtssUX22muvPPLII42q7e23386ZZ56Z3XbbLZtuumkGDBiQww8/PH/6058atZ/WZEXn2fV/l4Y/m222WXbZZZeceuqpn2reMXr06NK+3nvvvY8dO2fOnFxyySW54YYbGv06AKx69JWalr7SyqOvBEBL0lfSV1rZ9JWgdROgglaic+fO6dGjR3r06JHu3buXtnft2nWZ2z/JRRddlJ/+9KeZNm1ac5Rb8vLLL+ell15Ksvikf8899zTr662ISZMmZZ999sno0aObbJ9XXHFFrr322rz11ltp27ZtXnvttZx11lm5//77V+j5//jHP7L33nvnhhtuyGuvvZaKiopUV1dn/PjxOemkk1a4qdja3HHHHTn66KPz5ptvrtD4ohwvAKw89fOkHj16ZI011kiSVFRULLG9Y8eOK7y/b3zjG7n77rub/eqqDh06pEePHunWrVsWLlyYf/3rX7n66qtz6KGHpqamplle84MPPsjuu++eP/zhD6mrq/vE8T/72c9yxx13ZMqUKamqqsorr7yS4447boXPmWPHjs1ee+2VX//613nrrbfSrl27fPjhh3n66afzgx/8INddd91nfUstorHz7Prjce211055eXkmT56c3/zmN9lvv/3yxhtvNFudhx56aH7xi1+kurq62V4DgNZDX6np6CutPPpKALQ0faUVp6/UNPSVoHUToIJW4pRTTsmoUaMyatSo3HXXXaXt1157bWn73XffvcL7mz17dnOUuZR77703SdK2bdskyf33358FCxaslNdennnz5qW2trZJ9zlq1KgkyZFHHpkxY8bk5JNPTpI89thjn/jchQsX5phjjsnUqVOz3nrr5d5778348eMzZsyY7LvvvkmSu+++O0899VST1rwyzJkzp1Hji3K8ALDy1M+TRo0aVbpyvU+fPsvcviJW1hxqzz33zKhRo/L0009nwoQJOeecc1JeXp4JEybkF7/4RbO85oIFCxrV9Pjzn/+cJDnzzDMzZsyYDB8+PHV1dXn88cc/8bkzZ87MiBEj8uGHH2bTTTfNww8/nHHjxuWpp57KTjvtlCS5/PLL869//evTvZkW1NhjpP54fOqpp/L888/ntttuS7du3TJjxoycdtppzVTlyjuWAWgd9JWajr7SyqOvBEBL01dacfpKTUNfCVo3ASpYBY0bNy7f+973MmDAgGyxxRb59re/nSeeeKL0+Mknn1xqio0ZMyZ9+/YtJbr//ve/57vf/W4GDhyYTTfdNDvvvHPOPPPMT3UirK6uzm9/+9skyUknnZTKyspMmzYtf/zjH5ca+9RTT2XYsGHZbrvtssUWW2To0KH5xS9+sURK/fXXX8+xxx6bwYMHl5ahPP300/PBBx8ssa8nn3wy++67bzbbbLMMGjQoJ510Ut59990ki5efPPDAA0tjd9ttt1JTakX3vyzrrbdekpSuiKtv8PTq1esTn/v444+XJnGXX355Nt988yRJx44dc84552TbbbfNgQcemPbt2ydJRo4cWVqKs6GhQ4cusVxs/VKb2223Xe65554MHjw4O+ywQyZMmFBauv+ss87Ksccem6222ioHHXRQksXLxl988cXZeeeds+mmm2bo0KG5+eabl/hb1C8De9ttt+WGG27ILrvsks033zyHHXZYXn/99SSLlw+95JJLkixeRrVv374ZOXLkcj+HIh0vALQ+tbW1ufHGG7PHHntk8803z/bbb58TTzxxieWu+/btW7pK75RTTlniNje333579thjj2yxxRbZcssts/fee6/wigGfpLKyMgcccED22GOPJFniS89k8dzgG9/4RjbddNMMHjw455xzznLnbo899liGDh2azTbbLPvvv39pDvjWW29lxx13LI075JBDMnz48I+t6/Of/3ySTzf/ue+++zJjxoxUVlbmuuuuyxe+8IUkSbdu3XLxxRdniy22yLBhw0pfNi1vufjNNttsiTlG/Txp3333zc9//vMMHDgwO++8c955553S/OXKK6/MEUcckS233DL/8R//kSSZNWtWzjjjjAwaNCibbbZZ9tprrzz44INLvNauu+6avn375tFHH83FF1+c7bffPltssUWOOeaY0lWBHzfPXlHbbrttjj/++NI+XnvttdJj48ePz/Dhw7P55ptnwIAB+fGPf7zcZuA//vGPHHzwwdlss83yla98JXfccccS76V+vz//+c/Tt2/fRtUIwOpNX0lfqf696iu1zuMFgNZHX0lfSV8JiqGipQsAGufRRx/Ncccdl9ra2lRWVqZNmzZ57rnnctRRR+W0007L8OHD07lz53To0CFz585NZWVlunbtmqqqqkyfPj1HHHFEZs6cmfbt26dDhw6ZMmVKfv3rX6euri5nnXVWo2uZOXNmOnXqlP333z9/+9vf8uijj+aee+5ZYpLyyiuv5Ac/+EEWLFiQDh06pKqqKq+99louueSSVFdX55hjjkl1dXUOO+ywTJ48OZWVlVlzzTUzZcqU3H333Xnttddy2223JUkeeeSRHHfccamrq0unTp0ye/bsPPDAA3n22WfzwAMPpKqqKl27ds2MGTOSJN27d0/nzp1XeP/L86Mf/Sh//vOf8/vf/z5z587NqFGjssEGG+RHP/rRJ35OTz/9dJLFk8JNNtlkiccqKio+8bU/yezZs3PGGWdkjTXWSFlZWb70pS+VHrv33ntTW1ub9u3b54tf/GKSZMSIEXnyySdTXl6eTp065fXXX8/555+fqVOn5qSTTlpi3zfffHPefvvtdOjQIdXV1XnmmWdy0kkn5e67707Hjh3TsWPHzJ49O23atMnaa69datYtS5GOFwBan2OPPbZ0hf8aa6yRGTNm5MEHH8xf//rX3H333enTp0969OiRqVOnJll8G5z629zcc889Oeecc5Ika621VubOnZuXX345J598cjbYYINsscUWTVLjDjvskIceeijvvfde3nnnnfTu3Ts33XRTLrjggtJrv//++7n99tvz97//PXfccUcqKv7vf+neeeedjBgxIu3atcuCBQvy4osv5rvf/W5+/etfp3v37unevXvee++9JEmXLl3SpUuXj61nxIgROeqoo3LjjTfm1VdfzahRo5b48uzj1M9/+vfvv9Ttgjp37tyoFTCW5dVXX83EiRPTqVOntG/fPr179y49Vn+lZWVlZfr165eampocdthhmThxYioqKtKxY8e88sorOfHEE/Phhx9m2LBhS+z7wgsvzOTJk9O2bdvMmzcvjz76aCorK3PppZcud57dWDvssEPp388//3w22GCDPPfccznkkEOyYMGCrLHGGlm4cGEee+yxjB07Nvfff/8S7zFJjjrqqNTW1qauri7//ve/c/bZZ6e2tjaHHHJIunfvnqlTp2bhwoVZY401GnW7AQBWb/pK+kofpa/U+o4XAFoffSV9JX0lKAYrUMEqpKamJmeeeWZqa2szZMiQjB49OuPGjStd6fTf//3fmTp1ak455ZTsueeeSZItt9wyo0aNypZbbpnXXnstG2+8cXbYYYf87W9/y5gxY3LEEUckSZ577rlG13PfffclSXbfffe0bds2++23X5LFE5v6RHmy+KqvBQsWZIsttsi4ceMyZsyYnHnmmdlxxx1TWVmZZPFkZfLkyamqqspTTz2VZ555Jvfee2+23nrrbLDBBpk9e3bq6upy4YUXpq6uLqeddlrGjh2bMWPGZIcddsibb76ZO++8M1tuuWWuvfba0mvfddddOeWUU1Zo/x9n1qxZWWuttZIsXnZ0gw02yH333Zdu3bp94uc0efLkJEnPnj1X/MNthIULF2a//fbLuHHj8sgjjywx2VqwYEFuu+22jBs3Lscff3yeeeaZPPnkk+nSpUseffTRjB49Og8++GDatm2bW265pTS5rzdt2rTcc889GTduXA4++OAkyYQJEzJz5swcfvjh+cEPflB6b6NGjcrXv/715dZZpOMFgNbl8ccfLzW5LrzwwowfPz6PPfZY1ltvvUyfPj3/9V//lWTxsu3159GGV4S999572XjjjXPKKadk9OjRGT16dD73uc8lWXxebCoN5xXTpk3L7Nmzc+WVVyZJrrnmmowePTp//etfs9FGG2XChAl59NFHl3h+dXV1jj322NL7W2eddbJgwYL88pe/TM+ePZe4svGKK64o7Xt5qqur06FDhyxatCijRo3Kdtttl1tvvfVjv9iq19zznwULFuTYY4/N2LFjl7hCLknKy8vzu9/9LqNHj85BBx2UBx98MBMnTswGG2yQv/zlLxk9enRuuummJIs/h48uPz9//vz8/ve/z5gxY0pXi9YvO7+8eXZjrb322qV/1zcfL7rooixYsCBHHHFEaQ6077775oMPPsj111+/1D4GDRpUmt9sv/32SRbfpmnRokWl5m2SHH744aXbBgFQbPpK+krLoq/U+o4XAFoXfSV9JX0lfSWKwwpUsAoZP358pk+fniT56U9/mjXWWCPJ4hPu/fffn5qamowaNSrf+ta3lvn8bbbZJrfcckvmz5+fF154Ic8//3xpacj6pTNX1Jtvvll67r777pskGTx4cNZZZ528++67uffee0tLW2688cZJFk8Ehw0blkGDBmXAgAG59tprS5PJ9dZbL2ussUbmzJmTAw44IDvttFNpTOfOnZMkr732Wmk51Ouvvz6//OUvl6j96aefzpFHHrnMeldk/8tz55135uyzz84aa6yR4cOH57bbbsu//vWvPPnkk+ndu3eeeeaZDBw4MNtss80yn79o0aIV+1A/g3322SdJlmq8ff7zny/V1aVLlzzzzDNJFl9dWN+4ShY3y2pra/O3v/0te+21V2n7oEGDSkvDN1zCc86cOZ/4uTVUpOMFgNanvsm1zTbbZO+9906S9OnTJz/4wQ/y05/+NH/9619TXV2dtm3bLvP5Rx99dI4++uhMnTo1jzzySJ577rl8+OGHSdKkX36UlZWV/l1bW5sJEyZk7ty5SZKzzjqrtKrDrFmzkiz+cmj33XcvPWeNNdbI97///ZSVlaVPnz7Zb7/9cu21136qZtxFF12UG264Id27d8/uu++e++67L+PHj8+ECRMya9as/POf/8yOO+64xAoFDa2M+U/9l2Yfnf9svfXWpWXiq6qq8re//S1JMmXKlNLfv96sWbPy4osvLjGPGzp0aOn5u+66a5544olGz5UbY9GiRZk/f37p73T//ffnd7/7XZLFTbfk/668bOioo45Ku3btkiRHHnlknn766cyYMSNvvvlmqX4AaEhfSV9pefSVWs/xAkDro680odG16CvpK8GqSoAKViH198gtKysrpdOTpH379ll77bXzzjvvlBphyzJ//vycc845+Z//+Z9UV1enT58+pf9pr6ura1Qtv/nNb0rPOeCAA5Z6fOTIkRkxYkQqKiqy/fbb5/zzz8/111+f8ePHZ/z48UkWLxd64oknZr/99kvnzp3zq1/9KhdffHGeffbZ3Hrrrbn11ltTWVmZAw88MKeddlref//90v7rE9UNTZkyZbn1rsj+G04u602ePDnnnXde6urqcskll2SXXXZJ27Ztc8MNN+S0007L//t//y8vvfRSPvjgg+U2utZZZ53SvpZl9OjR2WijjZZa7vSjf5P6ezl/3Gt81EeXNq3/DBcsWLDUVYFJltrWcOJYP5FKGj95LcrxAkDrVD+Hqr9yqt66666bZPF58YMPPkiPHj2W+fyJEyfm9NNPz9///vdUVlZmk002KX350tg51Mepv/VHsvgc/NZbb5V+X9Z5+6Pnsi5duqRNmzal3+uv0qtvyq2oF154ITfccEPKy8tzww03pF+/fpk7d24efvjhjBgxonSrlqqqquU2utZZZ5289tpry53//OUvf8lWW21V+uK23kc/z4+bc3x0nrO87fVzgnnz5mXevHlLjf+4+U/9VZFN+XduWFOSdO3aNTNnzizN9Ro+Vm9Z85aGVxs2PHYb+/cGoDj0lfSVlkdfqXUcLwC0TvpK+kqJvhIUhQAVrELqT2Z1dXV5++23S5O1efPmlSZw9Sf2Zf1P+NVXX5377rsv/fr1y3XXXZdevXrlrrvuyt///vdG1bFo0aIllupclvfeey9PPPFEvvrVryZJ9t577wwdOjTvvfdexo4dmyeffDKPP/54fvazn2XHHXdMjx49suWWW+b6669PTU1Nxo4dm7Fjx+bXv/51br/99my99dbZbLPNSvv/7W9/my9+8YtJkrlz56ZDhw6lx5bXgPik/TdM2td74YUXsmDBgpSVlWXHHXdMkpxwwgl55ZVX8te//jUvvfRSKisrl7rHcUMDBw7MyJEjM2XKlEycODGbbLJJ6bEPP/wwP/zhD1NTU5NTTz01Bx98cMrLF99ddeHChVm0aFHp94+btCzvyoaGzank/46PTTfdNL/5zW9K2+fMmbPURDPJEpPlT9vYKdLxAkDrVD+Hanhrj4a/V1ZWlr5w+uh5oba2Nj/60Y8yZcqU/PCHPyxdnXXggQeW5l9NZdy4cUkWN1r69OlTuuI9WbxiRP25ennn7WnTpi1xxWP9Fz3Le2+fVEePHj3Sr1+/JMl5552Xf/7zn5k0aVJmzJiRtdZaa6mr7hoaOHBgRo8enRdeeCHvvffeEs2nN954I9/73vfStm3bXHbZZdltt91KtS1YsKA0bu7cuVm4cOEy919ZWVmaI33U8uY/X/va10rLy9fW1mbBggVLjU2Sior/+9/kZX1mTfFlV/1nnCyec3Tr1i1t2rRJbW1trr/++uyyyy5JFs/z27Vrt8zXfPvtt9O7d+8kS36pV397IF/KAfBR+kr6Ssujr9Q6jhcAWid9JX2lRF8JimLZ/2UAWqWtttqqdGXfeeedlzlz5mTBggU5//zzU1NTk3bt2mXnnXdO8n8n6PplIRcuXJhJkyYlWZx47tatW2bOnJmHHnooSeOu/PrLX/5SSis/9NBDpau56n/69++fJKX7O19wwQXZYostMnz48HTt2jX7779/vve97yVZPMmYOXNmfv/732ebbbbJzjvvnPfffz9f+9rX8uMf/7g0MZsxY0Y+97nPla6QvO6661JTU5NZs2Zl7733zjbbbJMbb7wxyZLNmfoJ0orsf1l69eqVZHFz8cEHH0yy+IrLL3zhC6Ux5eXlefbZZ5f7eX39618vNSX/4z/+IxMnTiy95gknnJC5c+dm0aJF2WGHHZIknTp1Kr1m/VVyTz755DJT4/VWdCIzYMCAJIuveHjiiSeSJH/605+y9dZbZ9ddd80bb7yxQvupV3+czZs3L4sWLVrmZLRIxwsArVP9/GjcuHF54IEHkixucv3iF79Ikuyyyy6lK//qzwv154SZM2eWzmNrr7122rVrl3HjxuWll15K0nRLij/yyCOlL4a+/e1vp6ysLJtsskmpoXXNNddk0aJFmTx5coYMGZKBAweWluOuN3/+/Fx++eVZuHBhJk+enPvuuy9JSqsZLOuctyz1VxhOnTq1tMT3R+c/dXV1ef7555f7fr797W+nc+fOWbBgQY4++ujSHOOdd97JCSecUKpn2223TZLSHPfdd98tNSBHjhy53P03polTP//585//nBdeeCFJctddd2XLLbfM17/+9UZfWbeseXZjTJw4MVdccUWptg033DAVFRXZcsstkyQ33nhjZs+enerq6nz3u9/NVlttlfPOO2+p/VxxxRX58MMPU11dXTqWe/XqVboCtr7Oj/tbA1As+kr6Ssujr9Q6jhcAWid9JX2lRF8JisIKVLAKqaqqymmnnZYTTzwxTzzxRLbbbru0adMm8+fPT1lZWU499dRSEr6+sTJx4sRsvfXWufDCC7PVVlvlz3/+c5577rlst912WbBgQSmNXX/P4xVRf4XZxhtvnL59+y71+B577JHnn38+Tz/9dN56663ssccepSsSBw0alI4dO+aDDz5IkmyxxRbZcMMN07t373Tr1i2vv/56vvGNb6RLly6ZNWtWFi5cmLXWWiu77bZbysvLc9xxx+UnP/lJfvvb3+bxxx9PXV1dqqurs9Zaa5WuMuvdu3fKy8uzaNGiHHjggRk8eHDOO++8T9z/smy++eYZMmRInnzyyZx66qm54IILMmfOnNJSmN26dcv06dNz6qmnZtGiRfnWt761zL/bz3/+83z3u9/N66+/nn333TcdO3YsNbiS5NRTT836669f+kzat2+fefPm5bDDDsvnP//5vPbaa+nRo8cyl1ltjEGDBmWHHXbIU089laOOOiqdO3fOrFmzUldXl0033bTR9zWuP85mzJiRAQMGZMSIETn00EOXGFOk4wWA1mno0KEZOXJk/vKXv+Skk07K2Wefnblz56auri7du3fPqaeeWhrbp0+fTJo0KRdccEGuu+66/PWvf83666+f119/Peeee26uuuqqzJw5szS+MXOohv7nf/4nf/rTn1JXV5fZs2dn7ty5SRZfzf+DH/wgSbLmmmvm+9//fi6//PLccMMNufPOO0vztz59+mSnnXZaYp89e/bMzTffnF//+tepqalJbW1t2rVrlyOPPDLJ4mZSp06dMmvWrBx77LHZaKONSs2whr7yla9kk002ycSJE3P44YcvMV8oLy9P586d8/777+fII4/MTTfdlO23336pfXTt2jVXXHFFfvSjH+X555/PV7/61ay55pqlplKbNm3y3//931lzzTWTJNttt13Ky8uzYMGC7LnnnunVq1fefvvtdOnS5WO/7FsR3/zmN3PTTTflH//4R771rW+lc+fOpb/hLrvsUqphRS1rnv3lL395uePffPPN0t+qurq6NK/p3LlzzjnnnNK4Y489NocffnhGjx6dgQMHprKyMnPnzk27du2yxx57LLHPdu3a5Z///GcGDhyYNm3apLq6OklyzDHHlMasu+66efXVV3PzzTfnrrvuyp///OfSF6oAFJO+kr6SvlLrPl4AaJ30lfSV9JX0lSgOK1DBKuab3/xmbrnllgwePLh079z6JaEPPPDA0ri99tqrNKZ9+/apqKjIEUcckUMOOaTUDNt4441zySWXpKKiInPmzPnYtHe9GTNmlK4wGzp06DLHfP3rX0+bNm2yaNGi3Hvvvdl0001zxx13ZLfddstaa62VuXPnpk+fPjn88MNz/fXXp7y8PB07dsztt9+e73znO+ndu3dmz56dtddeO0OHDs2dd95ZumLvm9/8Zi6//PLSMtrt2rXLkCFDcscdd5RS0V27ds1xxx1Xus/wmmuuucL7X5Yrr7wyRx99dNZff/3Mmzcvbdu2zYABA3L11Vfnscceyz777JOBAwdmn332We4++vXrlwceeCCHHHJI+vTpk+rq6nTr1i2DBw/OjTfemOHDh5fGdu3aNVdddVU22mijlJWVpaKiIldddVW22GKLT/z7rIirrroqRxxxRHr37p25c+emd+/e+eEPf5iLL7640fvaaaed8o1vfCNrrLFGKioqlljCPCnm8QJA61NeXp7rrrsuP/nJT7LRRhtlwYIF6dKlS/bZZ5/cd999peWqk+Q///M/8/nPfz5lZWXp0qVLFi5cmKuvvjrbbbddOnTokKqqquy+++456qijkqR0JV1jzZ07N1OnTs27776bRYsWZcMNN8wxxxyT22+/fYlbqBx11FE544wzstFGG2XhwoXp1KlT9txzz9x+++1LNWj69++fq666Kuuuu27atGmT/v3755ZbbsmGG25Y+hxOPfXU0nms/uq8j6qsrMzNN9+cQw45JJ/73Ocyd+7cdOzYMYMHD86tt96a3/72t9l5552z1157LbPJVW/QoEF54IEHst9++6Vnz56ZP39+evXqla997Wu566678pWvfKU0dqONNsoFF1yQ9dZbL4sWLUrnzp1z0003LfG3+bSqqqpy66235oADDkj37t0zd+7crL/++jnxxBNz4oknNnp/y5pnf5yFCxdm6tSpmTp1aubMmZPevXvngAMOyAMPPJANNtigNG7bbbfNDTfckG233ba0lPx2222Xm266KZtvvvkS+2zXrl1uu+22bL311kmS9dZbL+edd17222+/0pijjz46ffv2TUVFRdZZZ53Mmzev0e8VgNWPvpK+0melr6SvBFA0+kr6SvpK+koUR1ldXV1dSxcBsKpbtGjRcu+XDACwOjL/AQBoGuZVAEDRmP8ArZEAFQAAAAAAAAAAUFhinQAAAAAAAAAAQGEJUAEAAAAAAAAAAIUlQAUAAAAAAAAAABSWABUAAAAAAAAAAFBYAlQAAAAAAAAAAEBhCVABAAAAAAAAAACFVdHSBQAAsNj555+fm2++OUnyX//1X9l///0/8/jhw4dnzJgxpd/LyspSUVGRtdZaKzvvvHNOPPHEdO7cOUly8skn5/7778+OO+6YX/3qV03zpgAAAID/3979hVZd/nEAfw/mZrmLYeYJwrIgp8IKpm6JKM1uihBR0IGYYKZeFF1JN8GMEVGUVypeFg1CbQppUJDeqVsXJkqSdpEXzsxCycJyk3a6GDt4fhu/8M929vud1wse2PP9fr4Pz3M73ufzwLhYvnx5Ll26lCSZNWtWjhw5Unp3+fLlPPfcc6X5qlWr8t577+Xvv//O3r17c/DgwVy4cCGDg4MpFApZtmxZXnvttcyYMWPM9ceye/fufP/999m1a9e/7vX8+fN3cUIAgImjAxUAwCRw69atHDp0qDTfv3//fa1/8MEHUygU8tBDDyVJfv311/T09OTVV19NsVi8h50DAAAAUGkXL15Mf39/ad7b2ztm3dtvv52urq589913GRoaygMPPJD+/v58+umnWbt2ba5fvz7qm4aGhhQKhVGjvr5+1LsRjY2NYz4HAJisdKACAJgEjh49mmvXrqW+vj4DAwM5ffp0zp07l7lz596X+hUrVqSrqytJMjg4mA8++CCffPJJzpw5k1OnTqWlpWXczgYAAADA+JkyZUpu3bqV3t7erFmzJknS19dX9i4Z7kr12WefJUk6Ozuzbt261NTUpLe3N5s3b86lS5eyb9++bNmypWz9rVu3jno2YunSpdm4cWNp3tTUVFr/pZdeur8HBQAYRzpQAQBMAj09PUmG26nPnz8/yX/vKnWn9berq6tLR0dHaX758uW72jMAAAAAldfc3JykvOvUSIDq6aefLj375ZdfSp3IZ8yYkZqamiTJ4sWLs23btmzYsCGPPvroRG0bAGBSEaACAKiwn3/+OcePH0+SrF69OqtXr06SHDp0KH/99dc91/+nwcHBfPzxx6X5rFmz7vUIAAAAAFRIa2trkuHQVLFYzI8//pgrV67kkUceyWOPPVaqa2pqSmNjY5LkjTfeyNq1a7Nz586cPHky69evz1tvvaVrFABQtQSoAAAq7MCBAxkaGsqTTz6ZZ555JitWrEhdXV3++OOPfPnll/dcnySHDx/OsmXLsmTJkrS0tJTatT/77LNlv0QEAAAA4H/L448/nkKhkKtXr+b8+fOlTlSLFi0qq5s6dWo+/PDDTJs2LUly+vTp7Nq1K+vWrUt7e3u6u7vHXH/Hjh1pamoqGzt37hzfQwEATDABKgCACioWizl48GCS4ev4kqSxsTHPP/98ktHX8t1p/Yg///wzV65cybVr11JbW5vZs2fn9ddfz549e+7/oQAAAACYUCNhqb6+vnzzzTdJkra2tlF1S5cuzZEjR/Lmm2+mtbU1dXV1SYav93vnnXfy0UcfjfqmoaEhhUKhbDQ0NIzjaQAAJl5tpTcAAFDN+vr60t/fn2T413w7duwoe3/q1Kn88MMPmTNnzl3Vj+jo6EhXV9d4HQMAAACACmptbc0XX3yR48eP58yZM0mGQ1UnT54sqxscHEySbNq0KZs2bcrAwEBOnDiR999/PxcuXEh3d3c2btxY9s3WrVuzZcuWiTkIAECF6EAFAFBBPT09/1pze1epO60HAAAA4P9fa2trkuTYsWP57bffMnPmzMyePbusZvfu3Wlubs7KlSszNDSUJKmvr097e3tefvnlJMnVq1cndN8AAJOFABUAQIVcv349X3/9dZKks7Mz3377bdl45ZVXkiSff/55bt68ecf1d2toaCg3btwYNe5lTQAAAADGzxNPPJGHH364FIwaCVTdbvHixUmGr+t79913S//r+emnn3LgwIEkybx58yZoxwAAk4sAFQBAhRw+fDgDAwOpra3Niy++mGnTppWNlStXJkl+//33fPXVV3dcf7dOnDiRlpaWUWPz5s335dwAAAAA3H+3h6bGClC1tLSko6MjSdLd3Z0FCxakra0t7e3tOXv2bKZMmZJt27ZN2H4BACYTASoAgAoZuY6vra0t06dPH/V+7ty5eeqpp5Ik+/btu+N6AAAAAKrHokWLxvz7dtu3b09nZ2eam5tTV1eXGzduZObMmXnhhReyf//+LFy4cKK2CwAwqdQUi8VipTcBAAAAAAAAAABQCTpQAQAAAAAAAAAAVUuACgAAAAAAAAAAqFoCVAAAAAAAAAAAQNUSoAIAAAAAAAAAAKqWABUAAAAAAAAAAFC1BKgAAAAAAAAAAICqJUAFAAAAAAAAAABULQEqAAAAAAAAAACgaglQAQAAAAAAAAAAVUuACgAAAAAAAAAAqFoCVAAAAAAAAAAAQNUSoAIAAAAAAAAAAKrWP+XhESOyYTddAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import sys\n", "sys.path.append('../group-1')\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import matplotlib.font_manager as font_manager\n", "\n", "def compare_balance_sheets(ticker_list: list):\n", " num_charts = len(ticker_list)\n", "\n", " fig, axes = plt.subplots(1, num_charts, figsize=(12*num_charts, 12), sharey=True)\n", "\n", " \n", " font = font_manager.FontProperties(weight='bold', size=12)\n", "\n", " for i, ticker in enumerate(ticker_list):\n", " assets_debt = pd.read_csv(r'../Companies_Data/'+ticker+'_Data/'+ticker+'_balance_sheet_4Y+4Q.csv')\n", " selected_data = assets_debt[['TotalAssets', 'TotalDebt', 'CurrentAssets', 'CurrentDebt']]\n", "\n", " sns.set(style=\"whitegrid\") \n", "\n", " ax = axes[i]\n", " asset_labels = ['Total Assets & Current Assets', ' Total Debt & Current Debt']\n", " asset_values = [selected_data.iloc[0]['TotalAssets'], selected_data.iloc[0]['CurrentAssets']]\n", " current_asset_values = [0, selected_data.iloc[0]['CurrentAssets']]\n", " ax.bar(range(len(asset_labels)), asset_values, color=['green', 'red'], label='Assets', alpha=0.5)\n", " ax.bar(range(len(asset_labels)), current_asset_values, color=['white', 'red'], alpha=0.5)\n", "\n", " \n", " debt_labels = ['Total Debt/ Current Debt', '']\n", " debt_values = [selected_data.iloc[0]['TotalDebt'], selected_data.iloc[0]['CurrentDebt']]\n", " current_debt_values = [0, selected_data.iloc[0]['CurrentDebt']]\n", " ax.bar(range(len(debt_labels)), debt_values, color=['darkgreen', 'darkred'], label='Debts')\n", " ax.bar(range(len(debt_labels)), current_debt_values, color=['white', 'darkred'])\n", "\n", " ax.set_title(f'{ticker} - Balance Sheet', fontproperties=font, fontsize=14, weight='bold')\n", " ax.set_xlabel(ticker, fontproperties=font)\n", " ax.set_ylabel('Amount in $', fontproperties=font)\n", " ax.set_xticks(range(len(asset_labels))) \n", " ax.set_xticklabels(asset_labels, fontproperties=font)\n", "\n", "\n", " ax.xaxis.grid(False)\n", " ax.yaxis.grid(False)\n", "\n", " \n", " green_patch = plt.Line2D([0], [0], color='green', alpha=0.5, linewidth=0, marker='s')\n", " red_patch = plt.Line2D([0], [0], color='red', alpha=0.5, linewidth=0, marker='s')\n", " ax.legend([green_patch, red_patch], ['Assets', 'Debts'], loc='best')\n", "\n", "\n", " plt.tight_layout() \n", " plt.show()\n", "\n", "ticker_list = ['AAPL', 'MSFT']\n", "compare_balance_sheets(ticker_list)\n", "\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": ".env", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }