
Visual Analytics – Assignment 2 – Part 2

Claudio Maggioni

Indexing
Similarly to part 1 of the assignment, the first step of indexing is to convert the newly given CSV dataset (stored in
data/restaurants_extended.csv) into a JSON-lines file which can be directly used as the HTTP request body of
Elasticsearch document insertion requests.

The conversion is performed by the script ./convert.sh. The converted file is stored in the JSON-lines file
data/restaurants_extended.jsonl.

The sources of ./convert.sh are listed below:

#!/bin/sh
set -e

SCRIPT_DIR=$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")" &> /dev/null && pwd)

input="$SCRIPT_DIR/data/restaurants_extended.csv"
output="$SCRIPT_DIR/data/restaurants_extended.jsonl"

In order:
- Convert CSV to JSON
- Convert JSON array in JSON lines notation
- Remove last line (which is all `null`)
cat "$input" | jq -s --raw-input --raw-output \

'split("\n") | .[1:-1] | map(split(",")) |
map({

"id": .[0],
"name": .[1],
"cityRaw": .[2],
"city": .[2] | split("/") | .[0],
"country": .[2] | split("/") | .[1],
"continent": .[2] | split("/") | .[2],
"location": {

"lon": .[8] | sub("ˆ\"\\["; "") | sub("\\s*"; "") | tonumber,
"lat": .[9] | sub("\\]\"$"; "") | sub("\\s*"; "") | tonumber,

},
"averageCostForTwo": .[3],
"aggregateRating": .[4],
"ratingText": .[5],
"votes": .[6],
"date": .[7]

})' "$input" | \
jq -c '.[]' > "$output"

The only change in the script is the way the field containing the restaurant location is parsed. In the extended

1

dataset, city, country and continent are in this field and separated by /. The script maps the three values in separate
fields and additionally maps the entire string to an additional cityRaw field which is used in the generation of the
runtime field for part 2.

The sourced of the updated upload script, loading the new index are listed below:

#!/bin/bash

set -e

SCRIPT_DIR=$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")" &> /dev/null && pwd)

elastic_dir="$HOME/bin/elasticsearch-8.6.2"
elastic_url="https://localhost:9200"
crt="$elastic_dir/config/certs/http_ca.crt"

input="$SCRIPT_DIR/data/restaurants_extended.jsonl"
password="GZH*wqNTvQ0WRdrPrpHm"

index_name="restaurants_extended"

Create index
curl --cacert "$crt" -u "elastic:$password" \

-X DELETE "$elastic_url/$index_name" | jq . || true
curl --cacert "$crt" -u "elastic:$password" \

-X PUT "$elastic_url/$index_name" | jq .

Upload mappings
cat mappings.json | curl --cacert "$crt" -u "elastic:$password" -X POST \

--data-binary @- "$elastic_url/$index_name/_mappings/" \
-H "Content-Type: application/json" | jq .

Upload documents one by one
while IFS= read -r line
do

id=$(echo "$line" | jq '.id | tonumber')
echo $line | curl -k --cacert "$crt" -u "elastic:$password" -X PUT \

--data-binary @- "$elastic_url/$index_name/_doc/$id" \
-H "Content-Type: application/json" | jq ._id &

done < "$input"

Mappings are stored in mappings.json and are identical to the ones in Part 1 other than for the new location fields
and their .keyword counterparts similarly generated as the old city field.

9499 documents are imported.

Data Visualization
The Dashboard, Canvas, and requested dependencies (like scripted fields and stored searched) are stored in the
JSON object export file export.ndjson. Screenshot of the Dashboard and Canvas can be found below.

The scripted field continent_scripted has been generated with the following Painless expression:

doc['cityRaw.keyword'].value.substring(doc['cityRaw.keyword'].value.lastIndexOf("/") + 1)

The expression extracts the last portion of the cityRaw field, i.e. the portion of text between the last / and the end
of the field, which contains the continent.

2

Figure 1: Part 2 Dashboard
3

Figure 2: Part 2 Canvas with no city selected

4

Figure 3: Part 2 Canvas with a city selected

5

Ingestion Plugin
Sources for the ingestion plugin can be found in the Gitlab repository:

usi-si-teaching/msde/2022-2023/visual-analytics-atelier/elasticsearch-plugin/ingest-lookup-maggicl.

The plugin can be built and installed on Elasticsearch with the script ./install-on-ec.sh included in the repository
by changing the variable ES_LOCATION to the path to the local installation of Elasticsearch.

The plugin works as illustrated in the README.md file in the repository, and it has been tested with a unit test suite
included in its sources.

The plugin lookup procedure works by splitting the indicated field in words (non-empty sequences of non-space
characters – according to the PCRE regular expression specification) and matching each word with the given
substitution map, performing substitutions when needed.

6

https://gitlab.com/usi-si-teaching/msde/2022-2023/visual-analytics-atelier/elasticsearch-plugin/ingest-lookup-maggicl

	Indexing
	Data Visualization
	Ingestion Plugin

