solver
This commit is contained in:
parent
f5b513f75c
commit
2923872054
1 changed files with 23 additions and 74 deletions
|
@ -1,7 +1,6 @@
|
|||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from numpy.core._multiarray_umath import ndarray
|
||||
import os
|
||||
from time import time as t
|
||||
if 'AI' in os.getcwd():
|
||||
from src import *
|
||||
else:
|
||||
|
@ -15,94 +14,44 @@ class Solver_TSP:
|
|||
available_initializers = {"random": random_initialier.random_method,
|
||||
"nearest_neighbors": nearest_neighbor.nn,
|
||||
"best_nn": nearest_neighbor.best_nn,
|
||||
"multi_fragment": multi_fragment.mf}
|
||||
"multi_fragment": multi_fragment.mf
|
||||
}
|
||||
|
||||
def __init__(self, method):
|
||||
available_improvements = {"2-opt": TwoOpt.loop2opt,
|
||||
"2.5-opt": TwoDotFiveOpt.loop2dot5opt}
|
||||
|
||||
def __init__(self, initializer):
|
||||
# self.available_methods = {"random": self.random_method, "nearest_neighbors": self.nn,
|
||||
# "best_nn": self.best_nn, "multi_fragment": self.mf}
|
||||
self.method = method
|
||||
self.initializer = initializer
|
||||
self.methods = [initializer]
|
||||
self.solved = False
|
||||
assert method in self.available_initializers, f"the {method} method is not available currently."
|
||||
assert initializer in self.available_initializers, f"the {initializer} initializer is not available currently."
|
||||
|
||||
def bind(self, local_or_meta):
|
||||
assert local_or_meta in self.available_improvements, f"the {local_or_meta} method is not available currently."
|
||||
self.methods.append(local_or_meta)
|
||||
|
||||
def __call__(self, instance_, verbose=True, return_value=True):
|
||||
self.instance = instance_
|
||||
self.solved = False
|
||||
if verbose:
|
||||
print(f"### solving with {self.method} ####")
|
||||
self.solution = self.available_methods[self.method](instance_)
|
||||
print(f"### solving with {self.methods} ####")
|
||||
start = t()
|
||||
self.solution = self.available_initializers[self.methods[0]](instance_)
|
||||
assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid"
|
||||
for i in range(1, len(self.methods)):
|
||||
self.solution = self.available_improvements[self.methods[i]](self.solution, self.instance)
|
||||
assert self.check_if_solution_is_valid(self.solution), "Error the solution is not valid"
|
||||
|
||||
end = t()
|
||||
self.evaluate_solution()
|
||||
self._gap()
|
||||
if verbose:
|
||||
print(f"### solution found with {self.gap} % gap ####")
|
||||
self._gap()
|
||||
print(f"### solution found with {self.gap} % gap in {np.around(end - start, 3)} seconds ####")
|
||||
if return_value:
|
||||
return self.solution
|
||||
|
||||
# def random_method(self, instance_):
|
||||
# n = int(instance_.nPoints)
|
||||
# solution = np.random.choice(np.arange(n), size=n, replace=False)
|
||||
# self.solution = np.concatenate([solution, [solution[0]]])
|
||||
# self.solved = True
|
||||
# return self.solution
|
||||
#
|
||||
# def nn(self, instance_, starting_node=0):
|
||||
# dist_matrix = np.copy(instance_.dist_matrix)
|
||||
# n = int(instance_.nPoints)
|
||||
# node = starting_node
|
||||
# tour = [node]
|
||||
# for _ in range(n - 1):
|
||||
# for new_node in np.argsort(dist_matrix[node]):
|
||||
# if new_node not in tour:
|
||||
# tour.append(new_node)
|
||||
# node = new_node
|
||||
# break
|
||||
# tour.append(starting_node)
|
||||
# self.solution = np.array(tour)
|
||||
# self.solved = True
|
||||
# return self.solution
|
||||
#
|
||||
# def best_nn(self, instance_):
|
||||
# solutions, lens = [], []
|
||||
# for start in range(self.instance.nPoints):
|
||||
# new_solution = self.nn(instance_, starting_node=start)
|
||||
# solutions.append(new_solution)
|
||||
# assert self.check_if_solution_is_valid(new_solution), "error on best_nn method"
|
||||
# lens.append(self.evaluate_solution(return_value=True))
|
||||
#
|
||||
# self.solution = solutions[np.argmin(lens)]
|
||||
# self.solved = True
|
||||
# return self.solution
|
||||
#
|
||||
# def mf(self, instance):
|
||||
# mat = np.copy(instance.dist_matrix)
|
||||
# mat = np.triu(mat)
|
||||
# mat[mat == 0] = 100000
|
||||
# solution = {str(i): [] for i in range(instance.nPoints)}
|
||||
# start_list = [i for i in range(instance.nPoints)]
|
||||
# inside = 0
|
||||
# for el in np.argsort(mat.flatten()):
|
||||
# node1, node2 = el // instance.nPoints, el % instance.nPoints
|
||||
# possible_edge = [node1, node2]
|
||||
# if multi_fragment.check_if_available(node1, node2, solution):
|
||||
# if multi_fragment.check_if_not_close(possible_edge, solution):
|
||||
# # print("entrato", inside)
|
||||
# solution[str(node1)].append(node2)
|
||||
# solution[str(node2)].append(node1)
|
||||
# if len(solution[str(node1)]) == 2:
|
||||
# start_list.remove(node1)
|
||||
# if len(solution[str(node2)]) == 2:
|
||||
# start_list.remove(node2)
|
||||
# inside += 1
|
||||
# # print(node1, node2, inside)
|
||||
# if inside == instance.nPoints - 1:
|
||||
# # print(f"ricostruire la solutione da {start_list}",
|
||||
# # f"vicini di questi due nodi {[solution[str(i)] for i in start_list]}")
|
||||
# solution = multi_fragment.create_solution(start_list, solution)
|
||||
# self.solution = solution
|
||||
# self.solved = True
|
||||
# return self.solution
|
||||
|
||||
def plot_solution(self):
|
||||
assert self.solved, "You can't plot the solution, you need to solve it first!"
|
||||
plt.figure(figsize=(8, 8))
|
||||
|
|
Reference in a new issue