This repository has been archived on 2021-10-31. You can view files and clone it, but cannot push or open issues or pull requests.
AICup/aco.cc

428 lines
12 KiB
C++

// vim: set ts=2 sw=2 et tw=80:
// compile with
// g++ -lpthread --std=c++11 -o c_prob/aco aco.cc
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <pthread.h>
#include <vector>
#include <set>
#include <iostream>
#include <algorithm>
#include <unistd.h>
using namespace std;
typedef unsigned int uint;
ostream& operator<< (ostream& out, vector<uint> a) {
out << "[";
for (int i = 0; i < a.size() - 1; i++) {
out << a[i] << ",";
}
out << a[a.size() - 1] << "]";
return out;
}
const uint MAX_NODES = 1577;
// alpha >= 0
double alpha;
// beta >= 1
double beta;
double pheromone_evaporation_coeff;
double pheromone_constant;
uint n_iterations;
uint n_ants;
uint n_nodes;
double dist_matrix[MAX_NODES][MAX_NODES];
double pheromone_map[MAX_NODES][MAX_NODES];
double ant_updated_pheromone_map[MAX_NODES][MAX_NODES];
double sh_dist;
vector<uint> sh_route;
bool first_pass;
uint start;
uint select_random(const set<uint> &s) {
auto n = rand() % s.size(); // not _really_ random
auto it = begin(s);
advance(it, n); // 'advance' the iterator n times
return *it;
}
struct ant {
uint other;
uint idx;
pthread_t t_handle;
uint location;
double distance_travelled;
set<uint> possible_locations;
vector<uint> route;
bool tour_complete = false;
void init() {
this->other = 0;
this->distance_travelled = 0.0;
this->route.clear();
this->possible_locations.clear();
for (size_t i = 0; i < n_nodes; i++) {
this->possible_locations.insert(i);
}
this->location = start;
this->update_route(start);
this->tour_complete = false;
};
void update_route(uint new_loc) {
this->route.push_back(new_loc);
this->possible_locations.erase(new_loc);
};
uint pick_path() {
if (first_pass) {
return select_random(this->possible_locations);
} else {
double attractiveness[n_nodes];
double sum_total = 0.0;
vector<uint> idxs;
for (uint loc : this->possible_locations) {
idxs.push_back(loc);
double pheromone_amount = pheromone_map[this->location][loc];
double distance = dist_matrix[this->location][loc];
if (distance == 0) { distance = 0.000000001; };
attractiveness[loc] = pow(pheromone_amount, alpha) *
pow(1 / distance, beta);
//cerr << "ant " << idx << " attr[loc]=" << attractiveness[loc] << endl;
sum_total += attractiveness[loc];
if (isnan(sum_total)) { cerr << "nanalert " << attractiveness[loc] <<
" " << pheromone_amount << " " << distance << endl; }
}
// it is possible to have small values for pheromone amount / distance,
// such that with rounding errors this is equal to zero
if (sum_total == 0.0) {
// increment all zero's, such that they are the smallest non-zero
// values supported by the system
// source: http://stackoverflow.com/a/10426033/5343977
for (uint loc : idxs) {
attractiveness[loc] = nextafter(attractiveness[loc],
std::numeric_limits<double>::infinity());
}
sum_total = nextafter(sum_total, std::numeric_limits<double>::infinity());
}
double toss = (double) rand() / (double) RAND_MAX;
// cerr << "ant " << idx << " sum_total is " << sum_total << " toss is " << toss << endl;
double cumulative = 0.0;
for (uint loc : idxs) {
double weight = (attractiveness[loc] / sum_total);
//cerr << "ant " << idx << " w: " << weight + cumulative << endl;
if (toss <= (weight + cumulative)) {
return loc;
}
cumulative += weight;
}
cerr << "cum " << cumulative << " n " << idxs.size() << " toss " << toss << endl;
sleep(1);
other++;
// cerr << "ant " << idx << " change statement" << endl;
return idxs[idxs.size() - 1];
}
};
void traverse(uint next) {
this->update_route(next);
this->distance_travelled += dist_matrix[this->location][next];
this->location = next;
//cerr << "traversing " << next << " dist: " << this->distance_travelled << endl;
}
void run() {
// cerr << "started ant - # can pick: " << this->possible_locations.size() << endl;
while (!this->possible_locations.empty()) {
uint next = this->pick_path();
this->traverse(next);
}
this->distance_travelled += dist_matrix[this->route[this->route.size() - 1]]
[this->route[0]];
// cerr << "stopped ant" << endl;
this->tour_complete = true;
}
};
void *ant_thread (void *ant_ptr) {
ant& ant = *((struct ant *) ant_ptr);
ant.run();
return NULL;
}
ant* ants;
void init_ants() {
for (size_t i = 0; i < n_ants; i++) {
ants[i].init();
ants[i].idx = i;
}
}
pthread_mutex_t mut;
void init_aco() {
pthread_mutex_init(&mut, NULL);
start = 0;
first_pass = true;
memset(pheromone_map, 0, sizeof(pheromone_map));
memset(ant_updated_pheromone_map, 0, sizeof(ant_updated_pheromone_map));
init_ants();
sh_dist = -1.0;
}
void populate_ant_updated_pheromone_map(ant& ant) {
for (size_t i = 0; i < ant.route.size(); i++) {
size_t j = (i + 1) % n_nodes;
double current_ph = ant_updated_pheromone_map[ant.route[i]][ant.route[j]];
double new_ph = pheromone_constant / ant.distance_travelled;
ant_updated_pheromone_map[ant.route[i]][ant.route[j]] =
ant_updated_pheromone_map[ant.route[j]][ant.route[i]] =
current_ph + new_ph;
}
}
void update_pheromone_map() {
for (size_t i = 0; i < n_nodes; i++) {
for (size_t j = 0; j < n_nodes; j++) {
pheromone_map[i][j] = (1 - pheromone_evaporation_coeff) *
pheromone_map[i][j] + ant_updated_pheromone_map[i][j];
}
}
}
void mainloop() {
for (size_t i = 0; i < n_iterations; i++) {
srand(i);
//cerr << "starting ants" << endl;
for (uint j = 0; j < n_ants; j++) {
pthread_create(&(ants[j].t_handle), NULL, ant_thread, &(ants[j]));
}
// cerr << "joining ants" << endl;
for (uint j = 0; j < n_ants; j++) {
pthread_join(ants[j].t_handle, NULL);
}
//cerr << "summing ants" << endl;
uint os = 0;
for (uint j = 0; j < n_ants; j++) {
os += ants[j].other;
populate_ant_updated_pheromone_map(ants[j]);
if (sh_dist < 0 || ants[j].distance_travelled < sh_dist) {
sh_dist = ants[j].distance_travelled;
sh_route = ants[j].route;
cerr << "new short distance is " << sh_dist << " ant " << j << endl;
}
}
update_pheromone_map();
first_pass = false;
init_ants();
memset(ant_updated_pheromone_map, 0, sizeof(ant_updated_pheromone_map));
/*double real = 0;
for (uint k = 0; k < n_nodes; k++) {
real += dist_matrix[sh_route[k]][sh_route[(k + 1) % n_nodes]];
}*/
cerr << "iteration " << i << ": dist " << sh_dist << endl;// << " os " << os << " rdist " << real << endl;
/*
uint nnz = 0;
double sum = 0, min = 1.0/0.0, max = -1.0/0.0;
for (int i = 0; i < n_nodes; i++) {
for (int j = 0; j < n_nodes - 1; j++) {
if (pheromone_map[i][j] != 0.0) nnz++;
sum += pheromone_map[i][j];
if (min > pheromone_map[i][j]) min = pheromone_map[i][j];
if (max < pheromone_map[i][j]) max = pheromone_map[i][j];
}
}
cerr << "phmap: avg " << sum / (double) (n_nodes * n_nodes) << " min " << min << " max " << max << " nnz " << nnz << endl;*/
}
}
uint two_opt() {
uint swaps = 0;
for (int i = 0; i < n_nodes - 1; i++) {
for (int j = i+2; j < n_nodes; j++) {
size_t ip = i == 0 ? (n_nodes - 1) : (i - 1);
size_t ei = sh_route[i], ej = sh_route[j], eii = sh_route[ip],
ejj = sh_route[j];
double new_dist = sh_dist - dist_matrix[eii][ei] - dist_matrix[ejj][ej]
+ dist_matrix[ei][ej] + dist_matrix[ejj][eii];
if (new_dist < sh_dist) {
//cerr << "2opt " << i << " " << j << ": " << new_dist << endl;
sh_dist = new_dist;
reverse(sh_route.begin() + i, sh_route.begin() + j);
swaps++;
}
}
}
return swaps;
}
uint two_five_opt() {
uint swaps = 0;
for (int i = 0; i < n_nodes - 2; i++) {
for (int j = i+2; j < n_nodes; j++) {
size_t ip = i == 0 ? (n_nodes - 1) : (i - 1);
size_t x1 = sh_route[ip];
size_t x2 = sh_route[i];
size_t x3 = sh_route[i+1];
size_t y3 = sh_route[j-2];
size_t y1 = sh_route[j-1];
size_t y2 = sh_route[j];
double var_a = sh_dist - dist_matrix[x2][x1] - dist_matrix[y2][y1]
+ dist_matrix[x1][y1] + dist_matrix[y2][x2];
double var_b = sh_dist - dist_matrix[x2][x1] - dist_matrix[y2][y1]
- dist_matrix[x2][x3] + dist_matrix[x2][y2]
+ dist_matrix[y1][x2] + dist_matrix[x1][x3];
double var_c = sh_dist - dist_matrix[x2][x1] - dist_matrix[y2][y1]
- dist_matrix[y1][y3] + dist_matrix[x1][y1]
+ dist_matrix[y1][x2] + dist_matrix[y3][y2];
if (var_a < sh_dist && var_a < var_b && var_a < var_c) {
//cerr << "25opt(a) " << i << " " << j << ": " << var_a << endl;
sh_dist = var_a;
reverse(sh_route.begin() + i, sh_route.begin() + j);
swaps++;
} else if (var_b < sh_dist && var_b < var_a && var_b < var_c) {
//cerr << "25opt(b) " << i << " " << j << ": " << var_b << endl;
//cerr << vector<uint>(sh_route.begin() + i - 1, sh_route.begin() + j + 1) << endl;
for (int k = i; k < j - 1; k++) {
sh_route[k] = sh_route[k + 1];
}
sh_route[j - 1] = x2;
//cerr << vector<uint>(sh_route.begin() + i - 1, sh_route.begin() + j + 1) << endl;
sh_dist = var_b;
swaps++;
} else if (var_c < sh_dist && var_c < var_a && var_c < var_b) {
//cerr << "25opt(c) " << i << " " << j << ": " << var_c << endl;
//cerr << vector<uint>(sh_route.begin() + i - 1, sh_route.begin() + j + 1) << endl;
for (int k = j - 2; k >= i; k--) {
sh_route[k + 1] = sh_route[k];
}
sh_route[i] = y1;
//cerr << vector<uint>(sh_route.begin() + i - 1, sh_route.begin() + j + 1) << endl;
sh_dist = var_c;
swaps++;
}
}
}
return swaps;
}
#define buffersize 100000
int main(int argc, char** argv) {
if (argc < 8) {
cerr << argv[0] << " [n_nodes] [n_iter] [n_ants] [alpha] [beta] [evap] [weight]" << endl;
return 1;
}
n_nodes = atoi(argv[1]);
n_iterations = atoi(argv[2]);
n_ants = atoi(argv[3]);
sscanf(argv[4], "%lf", &alpha);
sscanf(argv[5], "%lf", &beta);
sscanf(argv[6], "%lf", &pheromone_evaporation_coeff);
sscanf(argv[7], "%lf", &pheromone_constant);
ant ants_arr[n_ants];
ants = ants_arr;
cerr << n_nodes << endl;
char * pch;
int row = 0, column = 0;
char buffer[buffersize];
for (size_t i = 0; i < n_nodes; i++) {
fgets(buffer, buffersize, stdin);
pch = strtok(buffer, " ");
column = 0;
while (pch != NULL) {
sscanf(pch, "%lf", &(dist_matrix[row][column]));
pch = strtok(NULL, " ");
column++;
}
row++;
}
cerr << "reading done" << endl;
/*uint nnz = 0;
for (int i = 0; i < n_nodes; i++) {
for (int j = 0; j < n_nodes - 1; j++) {
if (dist_matrix[i][j] != 0.0) nnz++;
}
}
cerr << "dist: nnz " << nnz << endl;*/
init_aco();
// scan and parse
mainloop();
//for (uint k = 0; k < n_nodes; k++) {
// cerr << "p: " << sh_route[k] << ": " << dist_matrix[sh_route[k]][sh_route[(k + 1) % n_nodes]] << endl;
//}
cerr << "pre-optimization length: " << sh_dist << endl;
uint i = 0;
uint j = 0;
do {
//for (i = 0; i < 50; i++) {
//cerr << "2opt round " << i << endl;
//if(two_opt() == 0) break;
//}
for (j = 0; j < 50; j++) {
//cerr << "25opt round " << j << endl;
if(two_five_opt() == 0) break;
}
cerr << "optimizing length: " << sh_dist << endl;
} while (i > 0 || j > 0);
cerr << "optimized length: " << sh_dist << endl;
cout << sh_route << endl;
}