This repository has been archived on 2021-09-27. You can view files and clone it, but cannot push or open issues or pull requests.
NC/mp4/Project_4_Maggioni_Claudio/src/ClusterGraphs.m

75 lines
2.2 KiB
Mathematica
Raw Normal View History

2020-11-04 13:59:14 +00:00
% Cluster 2D real-world graphs with spectral clustering and compare with k-means
% USI, ICS, Lugano
% Numerical Computing
2020-11-11 20:36:00 +00:00
clear variables;
close all;
2020-11-04 13:59:14 +00:00
warning OFF;
addpath ../datasets
addpath ../datasets/Meshes
2020-11-11 20:36:00 +00:00
MATS = {'airfoil1', 'barth', 'grid2', '3elt'};
2020-11-04 13:59:14 +00:00
2020-11-11 20:36:00 +00:00
for i = 1:length(MATS)
load(strcat(MATS{i}, '.mat'));
2020-11-04 13:59:14 +00:00
2020-11-11 20:36:00 +00:00
% Specify the number of clusters
K = 4;
% Read graph
W = Problem.A;
Pts = Problem.aux.coord;
n = size(Pts,1);
% dummy var
dummy_map = ones(n,1);
2020-11-04 13:59:14 +00:00
2020-11-11 20:36:00 +00:00
figure;
spy(W)
xlabel(strcat(MATS{i}, ': adjacency matrix'))
%matlab2tikz('showInfo', false, strcat('../../', MATS{i}, '_adj.tex'))
%% 2a) Create the Laplacian matrix and plot the graph using the 2nd and 3rd eigenvectors
[L,~] = CreateLapl(W);
[V,~] = eigs(L, 4, 'smallestabs');
2020-11-04 13:59:14 +00:00
2020-11-11 20:36:00 +00:00
% Plot and compare
figure;
subplot(2,2,1);
gplot(W,Pts)
title(strcat(MATS{i}, ': nodal coordinates'))
subplot(2,2,2);
gplot(W,V(:, 2:3))
title(strcat(MATS{i}, ': eigenvector coordinates'))
2020-11-04 13:59:14 +00:00
2020-11-11 20:36:00 +00:00
%% 2b) Cluster each graph in K = 4 clusters with the spectral and the
% k-means method, and compare yourresults visually for each case.
2020-11-04 13:59:14 +00:00
2020-11-11 20:36:00 +00:00
[D_spec,x_spec] = kmeans_mod(V, K, n);
[D_kmeans,x_kmeans] = kmeans_mod(Pts, K, n);
2020-11-04 13:59:14 +00:00
2020-11-11 20:36:00 +00:00
% Compare and visualize
subplot(2,2,3);
gplotmap(W,Pts,x_spec)
title(strcat(MATS{i}, ': spectral clusters'))
subplot(2,2,4);
gplotmap(W,Pts,x_kmeans)
title(strcat(MATS{i}, ': k-means clusters'))
matlab2tikz('showInfo', false, strcat('../../', MATS{i}, '_clu.tex'))
2020-11-04 13:59:14 +00:00
2020-11-11 20:36:00 +00:00
cx = sum(x_spec == 1:4);
ck = sum(x_kmeans == 1:4);
fprintf('%10s spectral: %4d %4d %4d %4d k-means: %4d %4d %4d %4d\n', ...
MATS{i}, cx(1), cx(2), cx(3), cx(4), ck(1), ck(2), ck(3), ck(4));
figure;
subplot(1,2,1);
title(strcat(MATS{i}, ': spectral histogram'));
histogram(x_spec, [0:4] + 0.5);
subplot(1,2,2);
title(strcat(MATS{i}, ': k-means histogram'));
histogram(x_kmeans, [0:4] + 0.5);
matlab2tikz('showInfo', false, strcat('../../', MATS{i}, '_hist.tex'));
%% 2c) Calculate the number of nodes per cluster
[Spec_nodes,Kmeans_nodes] = ClusterMetrics(K,dummy_map,dummy_map);
end