34 lines
967 B
Mathematica
34 lines
967 B
Mathematica
|
function data = twospirals(N, degrees, start, noise)
|
||
|
% Generate "two spirals" dataset with N instances.
|
||
|
% degrees controls the length of the spirals
|
||
|
% start determines how far from the origin the spirals start, in degrees
|
||
|
% noise displaces the instances from the spiral.
|
||
|
% 0 is no noise, at 1 the spirals will start overlapping
|
||
|
|
||
|
if nargin < 1
|
||
|
N = 2000;
|
||
|
end
|
||
|
if nargin < 2
|
||
|
degrees = 570;
|
||
|
end
|
||
|
if nargin < 3
|
||
|
start = 90;
|
||
|
end
|
||
|
if nargin < 5
|
||
|
noise = 0.2;
|
||
|
end
|
||
|
|
||
|
deg2rad = (2*pi)/360;
|
||
|
start = start * deg2rad;
|
||
|
|
||
|
N1 = floor(N/2);
|
||
|
N2 = N-N1;
|
||
|
|
||
|
n = start + sqrt(rand(N1,1)) * degrees * deg2rad;
|
||
|
d1 = [-cos(n).*n + rand(N1,1)*noise sin(n).*n+rand(N1,1)*noise zeros(N1,1)];
|
||
|
|
||
|
n = start + sqrt(rand(N1,1)) * degrees * deg2rad;
|
||
|
d2 = [cos(n).*n+rand(N2,1)*noise -sin(n).*n+rand(N2,1)*noise ones(N2,1)];
|
||
|
|
||
|
data = [d1/2;d2/2];
|
||
|
end
|