mp4: done MATLAB
This commit is contained in:
parent
34b290c569
commit
4d9b7f859d
20 changed files with 1436993 additions and 98 deletions
27493
mp4/3elt_adj.tex
Normal file
27493
mp4/3elt_adj.tex
Normal file
File diff suppressed because it is too large
Load diff
327369
mp4/3elt_clu.tex
Normal file
327369
mp4/3elt_clu.tex
Normal file
File diff suppressed because it is too large
Load diff
48
mp4/3elt_hist.tex
Normal file
48
mp4/3elt_hist.tex
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
% This file was created by matlab2tikz.
|
||||||
|
%
|
||||||
|
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
|
||||||
|
%
|
||||||
|
\begin{tikzpicture}
|
||||||
|
|
||||||
|
\begin{axis}[%
|
||||||
|
width=2.603in,
|
||||||
|
height=4.754in,
|
||||||
|
at={(1.011in,0.642in)},
|
||||||
|
scale only axis,
|
||||||
|
xmin=0.3,
|
||||||
|
xmax=4.7,
|
||||||
|
ymin=0,
|
||||||
|
ymax=1800,
|
||||||
|
axis background/.style={fill=white}
|
||||||
|
]
|
||||||
|
\addplot[ybar interval, fill=mycolor1, fill opacity=0.6, draw=black, area legend] table[row sep=crcr] {%
|
||||||
|
x y\\
|
||||||
|
0.5 1088\\
|
||||||
|
1.5 965\\
|
||||||
|
2.5 869\\
|
||||||
|
3.5 1798\\
|
||||||
|
4.5 1798\\
|
||||||
|
};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
\begin{axis}[%
|
||||||
|
width=2.603in,
|
||||||
|
height=4.754in,
|
||||||
|
at={(4.436in,0.642in)},
|
||||||
|
scale only axis,
|
||||||
|
xmin=0.3,
|
||||||
|
xmax=4.7,
|
||||||
|
ymin=0,
|
||||||
|
ymax=3500,
|
||||||
|
axis background/.style={fill=white}
|
||||||
|
]
|
||||||
|
\addplot[ybar interval, fill=mycolor1, fill opacity=0.6, draw=black, area legend] table[row sep=crcr] {%
|
||||||
|
x y\\
|
||||||
|
0.5 31\\
|
||||||
|
1.5 1560\\
|
||||||
|
2.5 3098\\
|
||||||
|
3.5 31\\
|
||||||
|
4.5 31\\
|
||||||
|
};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}%
|
BIN
mp4/Project_4_Maggioni_Claudio.pdf
Normal file
BIN
mp4/Project_4_Maggioni_Claudio.pdf
Normal file
Binary file not shown.
|
@ -1,13 +1,22 @@
|
||||||
\documentclass[unicode,11pt,a4paper,oneside,numbers=endperiod,openany]{scrartcl}
|
\documentclass[unicode,11pt,a4paper,oneside,numbers=endperiod,openany]{scrartcl}
|
||||||
|
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{subcaption}
|
||||||
|
\usepackage{amsmath}
|
||||||
\input{assignment.sty}
|
\input{assignment.sty}
|
||||||
|
\usepackage{pgfplots}
|
||||||
|
\pgfplotsset{compat=newest}
|
||||||
|
\usetikzlibrary{plotmarks}
|
||||||
|
\usetikzlibrary{arrows.meta}
|
||||||
|
\usepgfplotslibrary{patchplots}
|
||||||
|
\usepackage{grffile}
|
||||||
|
\usepackage{amsmath}
|
||||||
|
\usepackage{subcaption}
|
||||||
|
\usepgfplotslibrary{external}
|
||||||
|
\tikzexternalize
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
|
|
||||||
\setassignment
|
\setassignment
|
||||||
\setduedate{Wednesday, 18 November 2020, 11:55 PM}
|
\setduedate{Wednesday, 18 November 2020, 11:55 PM}
|
||||||
|
|
||||||
|
@ -26,5 +35,24 @@
|
||||||
|
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering\input{airfoil1_clu.tex}
|
||||||
|
\caption{Graphs for \textit{Airfoil1}}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}
|
||||||
|
\centering\input{barth_clu.tex}
|
||||||
|
\caption{Graphs for \textit{Barth}}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}
|
||||||
|
\centering\input{grid2_clu.tex}
|
||||||
|
\caption{Graphs for \textit{Grid2}}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}
|
||||||
|
\centering\input{3elt_clu.tex}
|
||||||
|
\caption{Graphs for \textit{3elt}}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
0
mp4/Project_4_Maggioni_Claudio/similarityfunc.m
Normal file
0
mp4/Project_4_Maggioni_Claudio/similarityfunc.m
Normal file
|
@ -2,64 +2,74 @@
|
||||||
% USI, ICS, Lugano
|
% USI, ICS, Lugano
|
||||||
% Numerical Computing
|
% Numerical Computing
|
||||||
|
|
||||||
clear all;close all;
|
clear variables;
|
||||||
|
close all;
|
||||||
warning OFF;
|
warning OFF;
|
||||||
|
|
||||||
addpath ../datasets
|
addpath ../datasets
|
||||||
addpath ../datasets/Meshes
|
addpath ../datasets/Meshes
|
||||||
|
|
||||||
load airfoil1.mat
|
MATS = {'airfoil1', 'barth', 'grid2', '3elt'};
|
||||||
% load barth.mat
|
|
||||||
% load grid2.mat
|
|
||||||
% load 3elt.mat
|
|
||||||
|
|
||||||
% Specify the number of clusters
|
for i = 1:length(MATS)
|
||||||
K = 4;
|
load(strcat(MATS{i}, '.mat'));
|
||||||
% Read graph
|
|
||||||
W = Problem.A;
|
|
||||||
Pts = Problem.aux.coord;
|
|
||||||
n = size(Pts,1);
|
|
||||||
% dummy var
|
|
||||||
dummy_map = ones(n,1);
|
|
||||||
|
|
||||||
figure;
|
% Specify the number of clusters
|
||||||
spy(W)
|
K = 4;
|
||||||
title('Adjacency matrix')
|
% Read graph
|
||||||
%% 2a) Create the Laplacian matrix and plot the graph using the 2nd and 3rd eigenvectors
|
W = Problem.A;
|
||||||
% \----------------------------/
|
Pts = Problem.aux.coord;
|
||||||
% Your implementation
|
n = size(Pts,1);
|
||||||
% \----------------------------/
|
% dummy var
|
||||||
|
dummy_map = ones(n,1);
|
||||||
|
|
||||||
% Eigen-decomposition
|
figure;
|
||||||
% \----------------------------/
|
spy(W)
|
||||||
% Your implementation
|
xlabel(strcat(MATS{i}, ': adjacency matrix'))
|
||||||
% \----------------------------/
|
%matlab2tikz('showInfo', false, strcat('../../', MATS{i}, '_adj.tex'))
|
||||||
|
|
||||||
% Plot and compare
|
%% 2a) Create the Laplacian matrix and plot the graph using the 2nd and 3rd eigenvectors
|
||||||
figure;
|
[L,~] = CreateLapl(W);
|
||||||
subplot(1,2,1);
|
[V,~] = eigs(L, 4, 'smallestabs');
|
||||||
gplot(W,Pts)
|
|
||||||
xlabel('Nodal coordinates')
|
|
||||||
subplot(1,2,2);
|
|
||||||
gplot(W,Pts)
|
|
||||||
xlabel('TODO: Plot using Eigenvector coordinates')
|
|
||||||
|
|
||||||
%% 2b) Cluster each graph in K = 4 clusters with the spectral and the
|
% Plot and compare
|
||||||
% k-means method, and compare yourresults visually for each case.
|
figure;
|
||||||
|
subplot(2,2,1);
|
||||||
|
gplot(W,Pts)
|
||||||
|
title(strcat(MATS{i}, ': nodal coordinates'))
|
||||||
|
subplot(2,2,2);
|
||||||
|
gplot(W,V(:, 2:3))
|
||||||
|
title(strcat(MATS{i}, ': eigenvector coordinates'))
|
||||||
|
|
||||||
% \----------------------------/
|
%% 2b) Cluster each graph in K = 4 clusters with the spectral and the
|
||||||
% Your implementation
|
% k-means method, and compare yourresults visually for each case.
|
||||||
% \----------------------------/
|
|
||||||
|
|
||||||
|
[D_spec,x_spec] = kmeans_mod(V, K, n);
|
||||||
|
[D_kmeans,x_kmeans] = kmeans_mod(Pts, K, n);
|
||||||
|
|
||||||
% Compare and visualize
|
% Compare and visualize
|
||||||
figure;
|
subplot(2,2,3);
|
||||||
subplot(1,2,1);
|
gplotmap(W,Pts,x_spec)
|
||||||
gplotmap(W,Pts,dummy_map)
|
title(strcat(MATS{i}, ': spectral clusters'))
|
||||||
title('TODO: Plot the spectral clusters')
|
subplot(2,2,4);
|
||||||
subplot(1,2,2);
|
gplotmap(W,Pts,x_kmeans)
|
||||||
gplotmap(W,Pts,dummy_map)
|
title(strcat(MATS{i}, ': k-means clusters'))
|
||||||
title('TODO: Plot the K-means clusters')
|
matlab2tikz('showInfo', false, strcat('../../', MATS{i}, '_clu.tex'))
|
||||||
|
|
||||||
%% 2c) Calculate the number of nodes per cluster
|
cx = sum(x_spec == 1:4);
|
||||||
[Spec_nodes,Kmeans_nodes] = USI_ClusterMetrics(K,dummy_map,dummy_map);
|
ck = sum(x_kmeans == 1:4);
|
||||||
|
fprintf('%10s spectral: %4d %4d %4d %4d k-means: %4d %4d %4d %4d\n', ...
|
||||||
|
MATS{i}, cx(1), cx(2), cx(3), cx(4), ck(1), ck(2), ck(3), ck(4));
|
||||||
|
|
||||||
|
figure;
|
||||||
|
subplot(1,2,1);
|
||||||
|
title(strcat(MATS{i}, ': spectral histogram'));
|
||||||
|
histogram(x_spec, [0:4] + 0.5);
|
||||||
|
subplot(1,2,2);
|
||||||
|
title(strcat(MATS{i}, ': k-means histogram'));
|
||||||
|
histogram(x_kmeans, [0:4] + 0.5);
|
||||||
|
matlab2tikz('showInfo', false, strcat('../../', MATS{i}, '_hist.tex'));
|
||||||
|
|
||||||
|
%% 2c) Calculate the number of nodes per cluster
|
||||||
|
[Spec_nodes,Kmeans_nodes] = ClusterMetrics(K,dummy_map,dummy_map);
|
||||||
|
end
|
|
@ -9,56 +9,61 @@ warning OFF;
|
||||||
addpath ../datasets
|
addpath ../datasets
|
||||||
addpath ../datasets/Meshes
|
addpath ../datasets/Meshes
|
||||||
|
|
||||||
% Specify the number of clusters
|
|
||||||
K = 2;
|
|
||||||
|
|
||||||
%% 1a) Get coordinate list from pointclouds
|
%% 1a) Get coordinate list from pointclouds
|
||||||
% Coords used in this script
|
% Coords used in this script
|
||||||
Pts = getPoints();
|
[Pts_spirals,Pts_clusterin,Pts_corn,Pts_halfk,Pts_fullmoon,Pts_out] = getPoints();
|
||||||
figure;
|
|
||||||
scatter(Pts(:,1),Pts(:,2))
|
|
||||||
title('Two Spirals')
|
|
||||||
|
|
||||||
n = size(Pts, 1);
|
TITLES = ["Two Spirals", "Cluster in", "Corn", "Half crescent", "Full crescent", "Outlier"];
|
||||||
|
RUNS = {Pts_spirals, Pts_clusterin, Pts_corn, Pts_halfk, Pts_fullmoon, Pts_out};
|
||||||
|
KS = {2, 2, 4, 2, 2, 4};
|
||||||
|
|
||||||
% Create Gaussian similarity function
|
for i = 1:6
|
||||||
[S] = similarityfunc(Pts(:,1:2));
|
% Specify the number of clusters
|
||||||
|
Pts = RUNS{i};
|
||||||
|
K = KS{i};
|
||||||
|
disp(TITLES(i));
|
||||||
|
|
||||||
%% 1b) Find the minimal spanning tree of the full graph. Use the information
|
figure;
|
||||||
% to determine a valid value for epsilon
|
scatter(Pts(:,1),Pts(:,2))
|
||||||
H = minSpanTree(S);
|
title(TITLES(i))
|
||||||
epsilon = max(H(H > 0), [], 'all');
|
|
||||||
|
|
||||||
%% 1c) Create the epsilon similarity graph
|
n = size(Pts, 1);
|
||||||
[G] = epsilonSimGraph(epsilon,Pts, S);
|
|
||||||
|
|
||||||
%% 1d) Create the adjacency matrix for the epsilon case
|
% Create Gaussian similarity function
|
||||||
W = S .* G;
|
[S] = similarityfunc(Pts(:,1:2), 10 * log(n));
|
||||||
figure;
|
|
||||||
gplotg(W,Pts(:,1:2))
|
|
||||||
title('Adjacency matrix')
|
|
||||||
%% 1e) Create the Laplacian matrix and implement spectral clustering
|
|
||||||
[L,Diag] = CreateLapl(W);
|
|
||||||
|
|
||||||
% \----------------------------/
|
%% 1b) Find the minimal spanning tree of the full graph. Use the information
|
||||||
% Your implementation
|
% to determine a valid value for epsilon
|
||||||
% \----------------------------/
|
H = minSpanTree(S);
|
||||||
|
epsilon = max(H(H > 0), [], 'all');
|
||||||
|
|
||||||
% Cluster rows of eigenvector matrix of L corresponding to K smallest
|
%% 1c) Create the epsilon similarity graph
|
||||||
% eigennalues. Use kmeans for that.
|
[G] = epsilonSimGraph(epsilon,Pts);
|
||||||
[D_spec,x_spec] = kmeans_mod(Pts,K,n);
|
|
||||||
|
|
||||||
%% 1f) Run K-means on input data
|
%% 1d) Create the adjacency matrix for the epsilon case
|
||||||
% \----------------------------/
|
W = S .* G;
|
||||||
% Your implementation
|
figure;
|
||||||
% \----------------------------/
|
gplotg(W,Pts(:,1:2))
|
||||||
[D_kmeans,x_kmeans] = kmeans_mod(Pts,K,n);
|
title('Adjacency matrix')
|
||||||
|
|
||||||
|
%% 1e) Create the Laplacian matrix and implement spectral clustering
|
||||||
|
[L,Diag] = CreateLapl(W);
|
||||||
|
[V,~] = eigs(L, K, 'SA');
|
||||||
|
|
||||||
|
% Cluster rows of eigenvector matrix of L corresponding to K smallest
|
||||||
|
% eigennalues. Use kmeans for that.
|
||||||
|
[D_spec,x_spec] = kmeans_mod(V,K,n);
|
||||||
|
|
||||||
|
%% 1f) Run K-means on input data
|
||||||
|
[D_kmeans,x_kmeans] = kmeans_mod(Pts,K,n);
|
||||||
|
|
||||||
|
%% 1g) Visualize spectral and k-means clustering results
|
||||||
|
figure;
|
||||||
|
subplot(1,2,1)
|
||||||
|
gplotmap(W,Pts,x_spec)
|
||||||
|
title(strcat(TITLES(i), ': Spectral clusters'))
|
||||||
|
subplot(1,2,2)
|
||||||
|
gplotmap(W,Pts,x_kmeans)
|
||||||
|
title(strcat(TITLES(i), ': K-means clusters'))
|
||||||
|
end
|
||||||
|
|
||||||
%% 1g) Visualize spectral and k-means clustering results
|
|
||||||
figure;
|
|
||||||
subplot(1,2,1)
|
|
||||||
gplotmap(W,Pts,dummy_map)
|
|
||||||
title('TODO: Plot the spectral clusters')
|
|
||||||
subplot(1,2,2)
|
|
||||||
gplotmap(W,Pts,dummy_map)
|
|
||||||
title('TODO: Plot the K-means clusters')
|
|
|
@ -1,4 +1,4 @@
|
||||||
function [G] = epsilonSimGraph(epsilon, Pts, S)
|
function [G] = epsilonSimGraph(epsilon, Pts)
|
||||||
% Construct an epsilon similarity graph
|
% Construct an epsilon similarity graph
|
||||||
% Input
|
% Input
|
||||||
% epsilon: size of neighborhood (calculate from Prim's Algorithm)
|
% epsilon: size of neighborhood (calculate from Prim's Algorithm)
|
||||||
|
@ -14,6 +14,15 @@ fprintf('----------------------------\n');
|
||||||
fprintf('epsilon similarity graph\n');
|
fprintf('epsilon similarity graph\n');
|
||||||
fprintf('----------------------------\n');
|
fprintf('----------------------------\n');
|
||||||
|
|
||||||
G = S <= epsilon;
|
n = size(Pts, 1);
|
||||||
|
G = zeros(n, n);
|
||||||
|
for i = 1:n
|
||||||
|
for j = 1:n
|
||||||
|
dist = norm((Pts(i, :) - Pts(j, :)), 2);
|
||||||
|
if dist < epsilon
|
||||||
|
G(i, j) = 1;
|
||||||
|
G(j, i) = 1;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
end
|
end
|
|
@ -16,7 +16,7 @@ D = c;
|
||||||
x = zeros(size(Y,1),1);
|
x = zeros(size(Y,1),1);
|
||||||
D_old = inf*ones(size(D));
|
D_old = inf*ones(size(D));
|
||||||
count = 1;
|
count = 1;
|
||||||
while norm(D - D_old) > 0.00001 & count < 500
|
while norm(D - D_old) > 0.00001 && count < 500
|
||||||
D_old = D;
|
D_old = D;
|
||||||
% Assign points to clusters
|
% Assign points to clusters
|
||||||
for i = 1:n
|
for i = 1:n
|
||||||
|
|
24627
mp4/airfoil1_adj.tex
Normal file
24627
mp4/airfoil1_adj.tex
Normal file
File diff suppressed because it is too large
Load diff
293007
mp4/airfoil1_clu.tex
Normal file
293007
mp4/airfoil1_clu.tex
Normal file
File diff suppressed because it is too large
Load diff
48
mp4/airfoil1_hist.tex
Normal file
48
mp4/airfoil1_hist.tex
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
% This file was created by matlab2tikz.
|
||||||
|
%
|
||||||
|
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
|
||||||
|
%
|
||||||
|
\begin{tikzpicture}
|
||||||
|
|
||||||
|
\begin{axis}[%
|
||||||
|
width=2.603in,
|
||||||
|
height=4.754in,
|
||||||
|
at={(1.011in,0.642in)},
|
||||||
|
scale only axis,
|
||||||
|
xmin=0.3,
|
||||||
|
xmax=4.7,
|
||||||
|
ymin=0,
|
||||||
|
ymax=1200,
|
||||||
|
axis background/.style={fill=white}
|
||||||
|
]
|
||||||
|
\addplot[ybar interval, fill=mycolor1, fill opacity=0.6, draw=black, area legend] table[row sep=crcr] {%
|
||||||
|
x y\\
|
||||||
|
0.5 971\\
|
||||||
|
1.5 1050\\
|
||||||
|
2.5 1150\\
|
||||||
|
3.5 1082\\
|
||||||
|
4.5 1082\\
|
||||||
|
};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
\begin{axis}[%
|
||||||
|
width=2.603in,
|
||||||
|
height=4.754in,
|
||||||
|
at={(4.436in,0.642in)},
|
||||||
|
scale only axis,
|
||||||
|
xmin=0.3,
|
||||||
|
xmax=4.7,
|
||||||
|
ymin=0,
|
||||||
|
ymax=2000,
|
||||||
|
axis background/.style={fill=white}
|
||||||
|
]
|
||||||
|
\addplot[ybar interval, fill=mycolor1, fill opacity=0.6, draw=black, area legend] table[row sep=crcr] {%
|
||||||
|
x y\\
|
||||||
|
0.5 344\\
|
||||||
|
1.5 739\\
|
||||||
|
2.5 1869\\
|
||||||
|
3.5 1301\\
|
||||||
|
4.5 1301\\
|
||||||
|
};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}%
|
46256
mp4/barth_adj.tex
Normal file
46256
mp4/barth_adj.tex
Normal file
File diff suppressed because it is too large
Load diff
551415
mp4/barth_clu.tex
Normal file
551415
mp4/barth_clu.tex
Normal file
File diff suppressed because it is too large
Load diff
48
mp4/barth_hist.tex
Normal file
48
mp4/barth_hist.tex
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
% This file was created by matlab2tikz.
|
||||||
|
%
|
||||||
|
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
|
||||||
|
%
|
||||||
|
\begin{tikzpicture}
|
||||||
|
|
||||||
|
\begin{axis}[%
|
||||||
|
width=2.603in,
|
||||||
|
height=4.754in,
|
||||||
|
at={(1.011in,0.642in)},
|
||||||
|
scale only axis,
|
||||||
|
xmin=0.3,
|
||||||
|
xmax=4.7,
|
||||||
|
ymin=0,
|
||||||
|
ymax=2500,
|
||||||
|
axis background/.style={fill=white}
|
||||||
|
]
|
||||||
|
\addplot[ybar interval, fill=mycolor1, fill opacity=0.6, draw=black, area legend] table[row sep=crcr] {%
|
||||||
|
x y\\
|
||||||
|
0.5 1588\\
|
||||||
|
1.5 1490\\
|
||||||
|
2.5 2206\\
|
||||||
|
3.5 1407\\
|
||||||
|
4.5 1407\\
|
||||||
|
};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
\begin{axis}[%
|
||||||
|
width=2.603in,
|
||||||
|
height=4.754in,
|
||||||
|
at={(4.436in,0.642in)},
|
||||||
|
scale only axis,
|
||||||
|
xmin=0.3,
|
||||||
|
xmax=4.7,
|
||||||
|
ymin=0,
|
||||||
|
ymax=4000,
|
||||||
|
axis background/.style={fill=white}
|
||||||
|
]
|
||||||
|
\addplot[ybar interval, fill=mycolor1, fill opacity=0.6, draw=black, area legend] table[row sep=crcr] {%
|
||||||
|
x y\\
|
||||||
|
0.5 71\\
|
||||||
|
1.5 3617\\
|
||||||
|
2.5 71\\
|
||||||
|
3.5 2932\\
|
||||||
|
4.5 2932\\
|
||||||
|
};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}%
|
12901
mp4/grid2_adj.tex
Normal file
12901
mp4/grid2_adj.tex
Normal file
File diff suppressed because it is too large
Load diff
153583
mp4/grid2_clu.tex
Normal file
153583
mp4/grid2_clu.tex
Normal file
File diff suppressed because it is too large
Load diff
48
mp4/grid2_hist.tex
Normal file
48
mp4/grid2_hist.tex
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
% This file was created by matlab2tikz.
|
||||||
|
%
|
||||||
|
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
|
||||||
|
%
|
||||||
|
\begin{tikzpicture}
|
||||||
|
|
||||||
|
\begin{axis}[%
|
||||||
|
width=2.603in,
|
||||||
|
height=4.754in,
|
||||||
|
at={(1.011in,0.642in)},
|
||||||
|
scale only axis,
|
||||||
|
xmin=0.3,
|
||||||
|
xmax=4.7,
|
||||||
|
ymin=0,
|
||||||
|
ymax=1400,
|
||||||
|
axis background/.style={fill=white}
|
||||||
|
]
|
||||||
|
\addplot[ybar interval, fill=mycolor1, fill opacity=0.6, draw=black, area legend] table[row sep=crcr] {%
|
||||||
|
x y\\
|
||||||
|
0.5 785\\
|
||||||
|
1.5 1305\\
|
||||||
|
2.5 827\\
|
||||||
|
3.5 379\\
|
||||||
|
4.5 379\\
|
||||||
|
};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
|
\begin{axis}[%
|
||||||
|
width=2.603in,
|
||||||
|
height=4.754in,
|
||||||
|
at={(4.436in,0.642in)},
|
||||||
|
scale only axis,
|
||||||
|
xmin=0.3,
|
||||||
|
xmax=4.7,
|
||||||
|
ymin=0,
|
||||||
|
ymax=1400,
|
||||||
|
axis background/.style={fill=white}
|
||||||
|
]
|
||||||
|
\addplot[ybar interval, fill=mycolor1, fill opacity=0.6, draw=black, area legend] table[row sep=crcr] {%
|
||||||
|
x y\\
|
||||||
|
0.5 1271\\
|
||||||
|
1.5 1183\\
|
||||||
|
2.5 604\\
|
||||||
|
3.5 238\\
|
||||||
|
4.5 238\\
|
||||||
|
};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}%
|
BIN
mp4/usi_inf-.png
Normal file
BIN
mp4/usi_inf-.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 97 KiB |
Reference in a new issue