17 lines
723 B
Python
17 lines
723 B
Python
|
import os
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
from scraper.top100_extractor import programming_crime_list
|
||
|
from typing import Optional
|
||
|
|
||
|
DF_EPS_PATH: str = os.path.join(os.path.dirname(__file__), '..', '..', 'Elaborated_Data', 'eps_comparison.csv')
|
||
|
|
||
|
|
||
|
def get_eps_comp(tickers: list[str]) -> list[dict]:
|
||
|
df = pd.read_csv(DF_EPS_PATH)
|
||
|
ticker_series = pd.Series(tickers)
|
||
|
df = df.loc[df['Ticker'].isin(ticker_series), :] \
|
||
|
.rename(columns={"epsDifferential": "quarterlyDifferential", "Ticker": "ticker"}) \
|
||
|
.reset_index(drop=True)
|
||
|
df = df.pivot(index='quarter', columns='ticker', values='quarterlyDifferential').reset_index(drop=False)
|
||
|
return df.replace({ np.nan: None }).to_dict('records')
|