kse-01/report/main.tex

298 lines
10 KiB
TeX
Raw Permalink Normal View History

2023-11-07 10:48:00 +00:00
%!TEX TS-program = pdflatexmk
\documentclass{article}
\usepackage{algorithm}
\usepackage{textcomp}
\usepackage{xcolor}
\usepackage{soul}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{microtype}
\usepackage{rotating}
\usepackage{graphicx}
\usepackage{paralist}
\usepackage{tabularx}
\usepackage{multicol}
\usepackage{multirow}
\usepackage{pbox}
2023-11-07 11:35:27 +00:00
\usepackage{enumitem}
2023-11-07 10:48:00 +00:00
\usepackage{colortbl}
\usepackage{pifont}
\usepackage{xspace}
\usepackage{url}
\usepackage{tikz}
\usepackage{fontawesome}
\usepackage{lscape}
\usepackage{listings}
\usepackage{color}
\usepackage{anyfontsize}
\usepackage{comment}
\usepackage{multibib}
\usepackage{float}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{amssymb}
\usepackage{amsmath}
2023-11-08 21:31:16 +00:00
\usepackage{changepage}
2023-11-07 10:48:00 +00:00
\usepackage{hyperref}
\title{Knowledge Management and Analysis \\ Project 01: Code Search}
\author{Claudio Maggioni}
\date{}
\begin{document}
2023-11-08 21:31:16 +00:00
\maketitle
\begin{adjustwidth}{-4cm}{-4cm}
\centering
\begin{tabular}{cc}
\toprule
Repository URL & \url{https://github.com/kamclassroom2022/project-01-multi-search-maggicl} \\
Commit ID & \texttt{b8e0a2c3c41249e45b233b55607e0b04ebe1bad0} \\ \bottomrule
\end{tabular}
\end{adjustwidth}
\vspace{1cm}
\subsection*{Section 1 - Data Extraction}
The data extraction (implemented in the script \texttt{extract-data.py}) process scans through the files in the
TensorFlow project to extract Python docstrings and symbol names for functions, classes and methods. A summary of the
number of features extracted can be found in table~\ref{tab:count1}. The collected figures show that the number of
classes is more than half the number of files, while the number of functions is about twice the number of files.
Additionally, the data shows that a class has slightly more than 2 methods in it on average.
\begin{table}[H]
\centering
\begin{tabular}{cc}
\toprule
Type & Number \\
\midrule
Python files & 2817 \\
Classes & 1882 \\
Functions & 4565 \\
Methods & 5817 \\
\bottomrule
\end{tabular}
\caption{Count of created classes and properties.}
\label{tab:count1}
\end{table}
\subsection*{Section 2: Training of search engines}
The training and model execution of the search engines is implemented in the Python script \texttt{search-data.py}.
The training model loads the data extracted by \texttt{extract-data.py} and uses as classification features the
identifier name and only the first line of the comment docstring. All other comment lines are filtered out as this
significantly increases performance when evaluating the models.
The script is able to search a given natural language query among the extracted TensorFlow corpus using four techniques.
These are namely: Word Frequency Similarity, Term-Frequency Inverse Document-Frequency (TF-IDF) Similarity, Latent
Semantic Indexing (LSI), and Doc2Vec.
An example output of results generated from the query ``Gather gpu device info'' for the word frequency, TF-IDF, LSI
and Doc2Vec models are shown in
figures~\ref{fig:search-freq},~\ref{fig:search-tfidf},~\ref{fig:search-lsi}~and~\ref{fig:search-doc2vec} respectively.
All four models are able to correctly report the ground truth required by the file \texttt{ground-truth-unique.txt} as
the first result with $>90\%$ similarity, with the except of the Doc2Vec model which reports $71.63\%$ similarity.
\begin{figure}[b]
\small
\begin{verbatim}
2023-11-08 21:11:43 +00:00
Similarity: 90.45%
2023-11-07 11:35:27 +00:00
Python function: gather_gpu_devices
Description: Gather gpu device info. Returns: A list of test_log_pb2.GPUInf...
File: tensorflow/tensorflow/tools/test/gpu_info_lib.py
Line: 167
2023-11-08 21:11:43 +00:00
Similarity: 57.74%
Python function: gather_memory_info
Description: Gather memory info.
File: tensorflow/tensorflow/tools/test/system_info_lib.py
Line: 70
Similarity: 57.74%
Python function: gather_platform_info
Description: Gather platform info.
File: tensorflow/tensorflow/tools/test/system_info_lib.py
Line: 146
Similarity: 55.47%
2023-11-07 11:35:27 +00:00
Python function: compute_capability_from_device_desc
Description: Returns the GpuInfo given a DeviceAttributes proto. Args: devi...
File: tensorflow/tensorflow/python/framework/gpu_util.py
Line: 35
2023-11-08 21:11:43 +00:00
Similarity: 55.47%
2023-11-07 11:35:27 +00:00
Python function: gather_available_device_info
Description: Gather list of devices available to TensorFlow. Returns: A lis...
File: tensorflow/tensorflow/tools/test/system_info_lib.py
Line: 126
\end{verbatim}
2023-11-08 21:31:16 +00:00
\caption{Search result output for the query ``Gather gpu device info'' using the word frequency similarity model.}
\label{fig:search-freq}
\end{figure}
2023-11-07 11:35:27 +00:00
2023-11-08 21:31:16 +00:00
\begin{figure}[b]
\small
\begin{verbatim}
2023-11-08 21:11:43 +00:00
Similarity: 90.95%
2023-11-07 11:35:27 +00:00
Python function: gather_gpu_devices
Description: Gather gpu device info. Returns: A list of test_log_pb2.GPUInf...
File: tensorflow/tensorflow/tools/test/gpu_info_lib.py
Line: 167
2023-11-08 21:11:43 +00:00
Similarity: 59.12%
2023-11-07 11:35:27 +00:00
Python function: gather_memory_info
Description: Gather memory info.
File: tensorflow/tensorflow/tools/test/system_info_lib.py
Line: 70
2023-11-08 21:11:43 +00:00
Similarity: 56.40%
2023-11-07 11:35:27 +00:00
Python function: gather_available_device_info
Description: Gather list of devices available to TensorFlow. Returns: A lis...
File: tensorflow/tensorflow/tools/test/system_info_lib.py
Line: 126
2023-11-08 21:11:43 +00:00
Similarity: 55.25%
Python function: gather_platform_info
Description: Gather platform info.
File: tensorflow/tensorflow/tools/test/system_info_lib.py
Line: 146
2023-11-07 11:35:27 +00:00
2023-11-08 21:11:43 +00:00
Similarity: 53.97%
Python function: info
File: tensorflow/tensorflow/python/platform/tf_logging.py
Line: 167
2023-11-07 11:35:27 +00:00
\end{verbatim}
2023-11-08 21:31:16 +00:00
\caption{Search result output for the query ``Gather gpu device info'' using the TF-IDF model.}
\label{fig:search-tfidf}
\end{figure}
2023-11-07 10:48:00 +00:00
2023-11-08 21:31:16 +00:00
\begin{figure}[b]
\small
\begin{verbatim}
2023-11-08 21:11:43 +00:00
Similarity: 98.38%
Python function: gather_gpu_devices
Description: Gather gpu device info. Returns: A list of test_log_pb2.GPUInf...
File: tensorflow/tensorflow/tools/test/gpu_info_lib.py
Line: 167
Similarity: 97.66%
2023-11-07 11:35:27 +00:00
Python function: device
Description: Uses gpu when requested and available.
File: tensorflow/tensorflow/python/framework/test_util.py
Line: 1581
2023-11-07 10:48:00 +00:00
2023-11-08 21:11:43 +00:00
Similarity: 97.66%
2023-11-07 11:35:27 +00:00
Python function: device
Description: Uses gpu when requested and available.
File: tensorflow/tensorflow/python/keras/testing_utils.py
Line: 925
2023-11-07 10:48:00 +00:00
2023-11-08 21:11:43 +00:00
Similarity: 96.79%
Python class: ParallelDevice
Description: A device which executes operations in parallel.
File: tensorflow/tensorflow/python/distribute/parallel_device/parallel_device.py
Line: 42
2023-11-07 10:48:00 +00:00
2023-11-08 21:11:43 +00:00
Similarity: 96.67%
Python method: get_var_on_device
File: tensorflow/tensorflow/python/distribute/packed_distributed_variable.py
Line: 90
2023-11-07 11:35:27 +00:00
\end{verbatim}
2023-11-08 21:31:16 +00:00
\caption{Search result output for the query ``Gather gpu device info'' using the LSI model.}
\label{fig:search-lsi}
\end{figure}
2023-11-07 11:35:27 +00:00
2023-11-08 21:31:16 +00:00
\begin{figure}[b]
\small
\begin{verbatim}
2023-11-08 21:11:43 +00:00
Similarity: 71.63%
Python function: gather_gpu_devices
Description: Gather gpu device info. Returns: A list of test_log_pb2.GPUInf...
File: tensorflow/tensorflow/tools/test/gpu_info_lib.py
Line: 167
2023-11-07 11:35:27 +00:00
2023-11-08 21:11:43 +00:00
Similarity: 66.71%
Python function: device
Description: Uses gpu when requested and available.
File: tensorflow/tensorflow/python/keras/testing_utils.py
Line: 925
Similarity: 65.23%
Python function: gpu_device_name
Description: Returns the name of a GPU device if available or the empty str...
File: tensorflow/tensorflow/python/framework/test_util.py
Line: 129
Similarity: 64.33%
Python function: gather_available_device_info
Description: Gather list of devices available to TensorFlow. Returns: A lis...
2023-11-07 11:35:27 +00:00
File: tensorflow/tensorflow/tools/test/system_info_lib.py
2023-11-08 21:11:43 +00:00
Line: 126
Similarity: 64.29%
Python method: hosts
Description: A list of device names for CPU hosts. Returns: A list of devic...
File: tensorflow/tensorflow/python/tpu/tpu_embedding.py
Line: 1011
2023-11-07 11:35:27 +00:00
\end{verbatim}
2023-11-08 21:31:16 +00:00
\caption{Search result output for the query ``Gather gpu device info'' using the Doc2Vec model.}
\label{fig:search-doc2vec}
\end{figure}
\subsection*{Section 3: Evaluation of search engines}
The evaluation over the given ground truth to compute precision, recall, and the T-SNE plots is performed by the script
\texttt{prec-recall.py}. The calculated average precision and recall values are reported in table~\ref{tab:tab2}.
Precision and recall are quite high for all models.
The word frequency model has the highest precision and recall ($93.33\%$ and $100.00\%$ respectively), while the Doc2Vec
model has the lowest precision ($73.33\%$) and lowest recall ($80.00\%$).
\begin{table}[H]
\centering
\begin{tabular}{ccc}
\toprule
Engine & Avg Precision & Recall \\
\midrule
Frequencies & 93.33\% & 100.00\% \\
TD-IDF & 90.00\% & 90.00\% \\
LSI & 90.00\% & 90.00\% \\
Doc2Vec & 73.33\% & 80.00\% \\
\bottomrule
\end{tabular}
\caption{Evaluation of search engines.}
\label{tab:tab2}
\end{table}
\subsection*{TBD Section 4: Visualisation of query results}
The two-dimensional T-SNE plots (computed with perplexity $= 2$) for the LSI and Doc2Vec models are respectively in
figures~\ref{fig:tsne-lsi}~and~\ref{fig:tsne-doc2vec}.
The T-SNE plot for the LSI model shows evidently the presence of outliers in the search result. The Doc2Vec plot shows
fewer outliers and more distinct clusters for the results of each query and the query vector itself. However, even
considering the good performance for both models, it is hard to distinguish from the plots given distinct ``regions''
where results and their respective query are located.
\begin{figure}
\begin{center}
\includegraphics[width=\textwidth]{../out/lsi_plot}
\caption{T-SNE plot for the LSI model over the queries and ground truths given in \texttt{ground-truth-unique.txt}.}
\label{fig:tsne-lsi}
\end{center}
\end{figure}
\begin{figure}
\begin{center}
\includegraphics[width=\textwidth]{../out/doc2vec_plot}
\caption{T-SNE plot for the Doc2Vec model over the queries and ground truths given in \texttt{ground-truth-unique.txt}.}
\label{fig:tsne-doc2vec}
\end{center}
\end{figure}
2023-11-07 14:07:15 +00:00
2023-11-07 10:48:00 +00:00
\end{document}