2023-12-09 16:56:04 +00:00
|
|
|
import argparse
|
2023-12-09 10:56:23 +00:00
|
|
|
import os
|
2023-12-09 13:38:48 +00:00
|
|
|
import random
|
2023-12-09 16:56:04 +00:00
|
|
|
from functools import partial
|
2023-12-09 10:56:23 +00:00
|
|
|
|
2023-12-09 11:13:56 +00:00
|
|
|
import frozendict
|
2023-12-09 13:38:48 +00:00
|
|
|
import tqdm
|
2023-12-09 10:56:23 +00:00
|
|
|
from deap import creator, base, tools, algorithms
|
|
|
|
|
|
|
|
import fuzzer
|
|
|
|
import instrument
|
2023-12-09 16:56:04 +00:00
|
|
|
import operators
|
2023-12-09 13:38:48 +00:00
|
|
|
from fuzzer import generate_test_case, get_test_class
|
2023-12-09 10:56:23 +00:00
|
|
|
|
|
|
|
INDMUPROB = 0.05
|
2023-12-09 13:38:48 +00:00
|
|
|
MUPROB = 0.33
|
|
|
|
CXPROB = 0.33
|
2023-12-09 10:56:23 +00:00
|
|
|
TOURNSIZE = 3
|
2023-12-09 13:38:48 +00:00
|
|
|
NPOP = 1000
|
2023-12-09 10:56:23 +00:00
|
|
|
NGEN = 200
|
2023-12-11 14:43:53 +00:00
|
|
|
REPS = 1
|
2023-12-09 10:56:23 +00:00
|
|
|
|
|
|
|
OUT_DIR = os.path.join(os.path.dirname(__file__), "tests")
|
|
|
|
|
|
|
|
|
2023-12-09 16:56:04 +00:00
|
|
|
class Archive:
|
|
|
|
true_branches: dict[int, any]
|
|
|
|
false_branches: dict[int, any]
|
2023-12-11 14:43:53 +00:00
|
|
|
false_score: dict[int, any]
|
|
|
|
true_score: dict[int, any]
|
2023-12-09 16:56:04 +00:00
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
self.reset()
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
self.true_branches = {}
|
|
|
|
self.false_branches = {}
|
2023-12-11 14:43:53 +00:00
|
|
|
self.true_score = {}
|
|
|
|
self.false_score = {}
|
2023-12-09 16:56:04 +00:00
|
|
|
|
|
|
|
def branches_covered(self) -> int:
|
|
|
|
return len(self.true_branches.keys()) + len(self.false_branches.keys())
|
|
|
|
|
|
|
|
def branches_str(self) -> str:
|
|
|
|
branch_ids = sorted([f"{branch:2d}T" for branch in self.true_branches.keys()] +
|
|
|
|
[f"{branch:2d}F" for branch in self.false_branches.keys()])
|
|
|
|
return ' '.join([branch.strip() for branch in branch_ids])
|
|
|
|
|
|
|
|
def build_suite(self) -> set[instrument.Params]:
|
|
|
|
return set(list(self.true_branches.values()) + list(self.false_branches.values()))
|
|
|
|
|
|
|
|
|
2023-12-09 10:56:23 +00:00
|
|
|
def normalize(x):
|
|
|
|
return x / (1.0 + x)
|
|
|
|
|
|
|
|
|
2023-12-09 13:38:48 +00:00
|
|
|
def init_deap():
|
2023-12-11 14:43:53 +00:00
|
|
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
|
|
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
2023-12-09 13:38:48 +00:00
|
|
|
|
|
|
|
|
2023-12-09 19:52:07 +00:00
|
|
|
def generate(orig_name: str) -> set[instrument.Params]:
|
|
|
|
f_name = instrument.BranchTransformer.to_instrumented_name(orig_name)
|
2023-12-09 10:56:23 +00:00
|
|
|
args = instrument.functions[f_name]
|
|
|
|
|
2023-12-09 16:56:04 +00:00
|
|
|
range_start, range_end = instrument.n_of_branches[f_name]
|
|
|
|
total_branches = (range_end - range_start) * 2 # *2 because of True and False
|
|
|
|
archive = Archive()
|
|
|
|
|
2023-12-09 10:56:23 +00:00
|
|
|
toolbox = base.Toolbox()
|
2023-12-09 13:38:48 +00:00
|
|
|
toolbox.register("attr_test_case", lambda: list(generate_test_case(f_name, args).items()))
|
2023-12-09 11:43:16 +00:00
|
|
|
toolbox.register("individual", tools.initIterate, creator.Individual, lambda: toolbox.attr_test_case())
|
|
|
|
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
2023-12-09 16:56:04 +00:00
|
|
|
toolbox.register("evaluate", partial(compute_fitness, f_name, archive))
|
2023-12-09 10:56:23 +00:00
|
|
|
|
|
|
|
def mate(tc1, tc2):
|
|
|
|
t1, t2 = frozendict.frozendict(tc1), frozendict.frozendict(tc2)
|
|
|
|
o1, o2 = fuzzer.crossover(t1, t2, args)
|
|
|
|
i1, i2 = creator.Individual(o1.items()), creator.Individual(o2.items())
|
|
|
|
return i1, i2
|
|
|
|
|
|
|
|
def mutate(tc):
|
|
|
|
t = frozendict.frozendict(tc)
|
|
|
|
o = fuzzer.mutate(t, args)
|
|
|
|
i1 = creator.Individual(o.items())
|
|
|
|
return i1,
|
|
|
|
|
|
|
|
toolbox.register("mate", mate)
|
|
|
|
toolbox.register("mutate", mutate)
|
|
|
|
toolbox.register("select", tools.selTournament, tournsize=TOURNSIZE)
|
|
|
|
|
2023-12-09 13:38:48 +00:00
|
|
|
top_result = set()
|
|
|
|
top_coverage = 0
|
|
|
|
|
2023-12-09 10:56:23 +00:00
|
|
|
for i in range(REPS):
|
2023-12-09 16:56:04 +00:00
|
|
|
archive.reset()
|
2023-12-09 10:56:23 +00:00
|
|
|
population = toolbox.population(n=NPOP)
|
2023-12-09 13:38:48 +00:00
|
|
|
|
2023-12-11 14:43:53 +00:00
|
|
|
# Create statistics object
|
|
|
|
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
|
|
|
stats.register("min", min)
|
|
|
|
stats.register("max", max)
|
|
|
|
|
|
|
|
population, logbook = algorithms.eaSimple(population, toolbox, CXPROB, MUPROB, NGEN, verbose=False, stats=stats)
|
|
|
|
|
|
|
|
for gen, record in enumerate(logbook):
|
|
|
|
print(f"Generation {gen}: min={record['min']} max={record['max']}")
|
|
|
|
|
|
|
|
print(population)
|
2023-12-09 13:38:48 +00:00
|
|
|
|
2023-12-09 16:56:04 +00:00
|
|
|
tot_covered = archive.branches_covered()
|
2023-12-09 13:38:48 +00:00
|
|
|
|
|
|
|
cov: float = (tot_covered / total_branches) * 100
|
2023-12-09 10:56:23 +00:00
|
|
|
|
2023-12-09 16:56:04 +00:00
|
|
|
branches = archive.branches_str()
|
2023-12-09 13:38:48 +00:00
|
|
|
print(f"{orig_name}: rep #{i:02d}: Cov: {cov:02.02f}% ({tot_covered}/{total_branches} branches): {branches}")
|
|
|
|
|
|
|
|
if cov > top_coverage:
|
2023-12-09 16:56:04 +00:00
|
|
|
top_result = archive.build_suite()
|
2023-12-09 13:38:48 +00:00
|
|
|
top_coverage = cov
|
|
|
|
|
2023-12-09 19:52:07 +00:00
|
|
|
if tot_covered == total_branches:
|
|
|
|
break
|
|
|
|
|
2023-12-09 13:38:48 +00:00
|
|
|
return top_result
|
2023-12-09 10:56:23 +00:00
|
|
|
|
|
|
|
|
2023-12-09 16:56:04 +00:00
|
|
|
def compute_fitness(f_name: str, archive: Archive, individual: list) -> tuple[float]:
|
2023-12-09 11:13:56 +00:00
|
|
|
x = frozendict.frozendict(individual)
|
2023-12-09 16:56:04 +00:00
|
|
|
range_start, range_end = instrument.n_of_branches[f_name]
|
2023-12-09 10:56:23 +00:00
|
|
|
|
|
|
|
# Reset any distance values from previous executions
|
2023-12-09 16:56:04 +00:00
|
|
|
operators.distances_true = {}
|
|
|
|
operators.distances_false = {}
|
2023-12-11 14:43:53 +00:00
|
|
|
# archive.true_branches = {}
|
|
|
|
# archive.false_branches = {}
|
2023-12-09 10:56:23 +00:00
|
|
|
|
2023-12-09 11:43:16 +00:00
|
|
|
# the archive_true_branches and archive_false_branches are reset after
|
|
|
|
# each generation. This is intentional as they are used to archive branches that
|
|
|
|
# have already been covered, and their presence increases the fitness value of
|
|
|
|
# test cases that would re-cover them
|
|
|
|
|
2023-12-09 11:13:56 +00:00
|
|
|
# Run the function under test
|
|
|
|
try:
|
2023-12-11 14:43:53 +00:00
|
|
|
out = instrument.invoke(f_name, x)
|
2023-12-09 11:13:56 +00:00
|
|
|
except AssertionError:
|
2023-12-11 14:43:53 +00:00
|
|
|
print(f_name, x, "=", "[FAILS] fitness = 100.0")
|
2023-12-09 11:43:16 +00:00
|
|
|
return 100.0,
|
2023-12-09 11:13:56 +00:00
|
|
|
|
2023-12-09 10:56:23 +00:00
|
|
|
fitness = 0.0
|
2023-12-11 14:43:53 +00:00
|
|
|
branches = False
|
|
|
|
|
|
|
|
# print(operators.distances_true, operators.distances_false)
|
2023-12-09 11:13:56 +00:00
|
|
|
|
|
|
|
# Sum up branch distances
|
|
|
|
for branch in range(range_start, range_end):
|
2023-12-09 16:56:04 +00:00
|
|
|
if branch in operators.distances_true:
|
2023-12-11 14:43:53 +00:00
|
|
|
fitness += normalize(operators.distances_true[branch])
|
|
|
|
branches = True
|
|
|
|
|
|
|
|
if operators.distances_true[branch] == 0: # if test is true for this branch
|
|
|
|
if branch not in archive.false_score or archive.false_score[branch] > operators.distances_false[branch]:
|
|
|
|
archive.true_branches[branch] = x
|
|
|
|
archive.false_score[branch] = operators.distances_false[branch]
|
2023-12-09 13:38:48 +00:00
|
|
|
|
2023-12-09 16:56:04 +00:00
|
|
|
if branch in operators.distances_false:
|
2023-12-11 14:43:53 +00:00
|
|
|
fitness += normalize(operators.distances_false[branch])
|
|
|
|
branches = True
|
|
|
|
|
|
|
|
if operators.distances_false[branch] == 0: # if test is true for this branch
|
|
|
|
if branch not in archive.true_score or archive.true_score[branch] > operators.distances_true[branch]:
|
|
|
|
archive.false_branches[branch] = x
|
|
|
|
archive.true_score[branch] = operators.distances_true[branch]
|
|
|
|
|
|
|
|
if not branches:
|
|
|
|
return 100.0,
|
2023-12-09 11:43:16 +00:00
|
|
|
|
2023-12-11 14:43:53 +00:00
|
|
|
print(f_name, x, "=", out, "fitness =", fitness)
|
2023-12-09 10:56:23 +00:00
|
|
|
return fitness,
|
|
|
|
|
|
|
|
|
2023-12-09 19:52:07 +00:00
|
|
|
def build_suite(filename: str, f_names: list[str]):
|
|
|
|
suite = [(name, generate(name)) for name in f_names]
|
|
|
|
|
|
|
|
with open(os.path.join(OUT_DIR, f"test_{filename}.py"), "w") as f:
|
|
|
|
f.write(fuzzer.get_test_import_stmt(f_names))
|
|
|
|
f.write("\n\n")
|
|
|
|
f.write("\n\n".join([get_test_class(name, cases) for name, cases in suite]))
|
2023-12-09 13:38:48 +00:00
|
|
|
|
|
|
|
|
2023-12-09 10:56:23 +00:00
|
|
|
def main():
|
2023-12-09 13:38:48 +00:00
|
|
|
random.seed(0) # init random seed
|
2023-12-09 16:56:04 +00:00
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(prog='genetic.py',
|
|
|
|
description='Runs genetic algorithm for test case generation. Works on benchmark '
|
|
|
|
'files situated in the \'benchmark\' directory.')
|
|
|
|
parser.add_argument('file', type=str, help="File to test",
|
|
|
|
nargs="*")
|
|
|
|
|
|
|
|
instrument.load_benchmark(save_instrumented=False, files=parser.parse_args().file)
|
2023-12-09 13:38:48 +00:00
|
|
|
init_deap()
|
|
|
|
|
2023-12-09 19:52:07 +00:00
|
|
|
for file_name, functions in tqdm.tqdm(instrument.get_benchmark().items(), desc="Generating tests"):
|
|
|
|
build_suite(file_name, functions)
|
2023-12-09 10:56:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|